已知向量a=(sinx,cosx)b=(1,√3)x∈R
2个回答
展开全部
(1)a=(sinx,cosx)b=(1,√3)
a⊥b,ab=0
sinx+√3cosx=0
等式平方,可得:
sin²x+3cos²x+2√3sinxcosx=0
等式两边同除以cos²x,得:
tan²x+3+2√3tanx=0
(tanx+√3)²=0
tanx=-√3
(2)f(x)=ab=sinx+√3cosx
=2sin(x+π/3)
已知sinx的单增区间为:[-π/2+2kπ,π/2+2kπ] k∈Z
即:-π/2+2kπ≤(x+π/3)≤π/2+2kπ
-5π/6+2kπ≤x≤π/6+2kπ,k∈Z
递增区间为:[-5π/6+2kπ,≤π/6+2kπ],k∈Z
a⊥b,ab=0
sinx+√3cosx=0
等式平方,可得:
sin²x+3cos²x+2√3sinxcosx=0
等式两边同除以cos²x,得:
tan²x+3+2√3tanx=0
(tanx+√3)²=0
tanx=-√3
(2)f(x)=ab=sinx+√3cosx
=2sin(x+π/3)
已知sinx的单增区间为:[-π/2+2kπ,π/2+2kπ] k∈Z
即:-π/2+2kπ≤(x+π/3)≤π/2+2kπ
-5π/6+2kπ≤x≤π/6+2kπ,k∈Z
递增区间为:[-5π/6+2kπ,≤π/6+2kπ],k∈Z
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询