f(x)=[ax/(x^2+1)]+a g(x)=alnx-x(a≠0) 求证:当a>0时,对于任意x1 x2∈(0,e]总有g(x1)<f(x2)成立

求解... 求解 展开
唐卫公
2013-05-08 · TA获得超过3.7万个赞
知道大有可为答主
回答量:9440
采纳率:76%
帮助的人:4430万
展开全部
当a>0时,对于任意x1, x2∈(0,e]总有g(x1)<f(x2)成立, 只须在(0, e]内, g(x)最大值小于f(x)的最小值
f(x) = ax/(x² + 1) + a

f'(x) = [a(x² + 1) - ax*2x]/(x² + 1)² = a(1 - x²)/(x² + 1)² = 0
x = 1 (不必考虑x = -1 < 0)
0 < x < 1: a > 0, 1 - x² > 0, (x² + 1)² > 0, f'(x) > 0
x > 1: a > 0, 1 - x² < 0, (x² + 1)² > 0, f'(x) < 0
f(1)为最大值
f(0) = a, f(e) = ae/(1 + e²) + a > a
f(0)在[0, e]内取最小值a

g(x) = alnx - x
g'(x) = a/x - 1 = 0
x = a
0 < x < a: a/x - 1 = (a - x)/x > 0, g'(x) > 0

x > a: a/x - 1 = (a - x)/x < 0, g'(x) < 0
g(a)为最大值
(i) a > e
g(e)在(0, e]内取最大值, g(e) = a - e < a (f(x)在[0, e]内的最小值)

(ii) 0 < a < e
lna < lne = 1

g(a)在(0, e]内取最大值, g(a) = alna - a = a(lna - 1) < a(1 - 1) = 0 < a (f(x)在[0, e]内的最小值)
证毕
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式