用部分积分法求下列不定积分:∫xarctan xdx 要过程。。
2个回答
展开全部
∫xarctanxdx
=∫arctanxd(0.5*x^2)
=0.5*x^2 *arctanx-∫0.5*x^2d(arctanx)
=0.5*x^2 *arctanx-∫0.5*x^2/(1+x^2)dx
=0.5*x^2 *arctanx-0.5*∫(1-(1/(1+x^2))dx
=0.5*x^2 *arctanx-0.5*∫dx+0.5*∫(1/(1+x^2))dx
=0.5*x^2 *arctanx-0.5x+0.5*arctanx+C
=∫arctanxd(0.5*x^2)
=0.5*x^2 *arctanx-∫0.5*x^2d(arctanx)
=0.5*x^2 *arctanx-∫0.5*x^2/(1+x^2)dx
=0.5*x^2 *arctanx-0.5*∫(1-(1/(1+x^2))dx
=0.5*x^2 *arctanx-0.5*∫dx+0.5*∫(1/(1+x^2))dx
=0.5*x^2 *arctanx-0.5x+0.5*arctanx+C
追问
能写成2分之几的形式吗,谢谢
追答
可以的,因为
0.5=1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询