设函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b)=0.试证:在(a,b)内存在一点n,使得f ' (n)+f(n)=0

其实我很怀疑题目错了,应该是减号... 其实我很怀疑题目错了,应该是减号 展开
 我来答
百度网友3d66808
2013-05-10
知道答主
回答量:7
采纳率:0%
帮助的人:5.6万
展开全部
令g(x)=f'(x)+f(x),即要证明存在n属于(a,b)使得g(n)=0.
1.当f'(a)与f'(b)异号时。g(a)*g(b)=(f'(a)+f(a))*(f'(b)+f(b))=f'(a)*f'(b)<0.
故在(a,b)内一定存在n使得g(n)=0.
2.当f'(a)与f'(b)同号时。因为f(a)=f(b)=0,所以一定存在c属于(a,b)使得f(c)=0这时就可以仿照上面的证明,把上面的b替换成c即可。

这样的题目画一下图更好理解
福云德休碧
2019-04-21 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:30%
帮助的人:894万
展开全部
令g(x)=f'(x)+f(x),即要证明存在n属于(a,b)使得g(n)=0.
1.当f'(a)与f'(b)异号时。g(a)*g(b)=(f'(a)+f(a))*(f'(b)+f(b))=f'(a)*f'(b)<0.
故在(a,b)内一定存在n使得g(n)=0.
2.当f'(a)与f'(b)同号时。因为f(a)=f(b)=0,所以一定存在c属于(a,b)使得f(c)=0这时就可以仿照上面的证明,把上面的b替换成c即可。
这样的题目画一下图更好理解
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式