关于幂级数展开。最后一步是怎么得到的,我没有看懂,前面的都懂了
1个回答
展开全部
f=ln(X/(X+1))=lnx-ln(x+1) f(1)=-ln2
f'=1/x-1/(x+1)=1/(1+(x-1))-1/(x-1+2)=1/(1+(x-1))-(1/2)/(1+(x-1)/2)
=∑(0,+∞)(-1)^n(x-1)^n-∑(0,+∞)(-1)^n(1/2)[(x-1)/2)]^n |x-1|<1
=∑(0,+∞)(-1)^n[1-1/2^(n+1)](x-1)^n
积分得:f=∑(0,+∞)(-1)^n[1-1/2^(n+1)](x-1)^(n+1)/(n+1)+C
f(1)=-ln2代入得:C-ln2
所以:f=∑(0,+∞)(-1)^n[1-1/2^(n+1)](x-1)^(n+1)/(n+1)-ln2
f'=1/x-1/(x+1)=1/(1+(x-1))-1/(x-1+2)=1/(1+(x-1))-(1/2)/(1+(x-1)/2)
=∑(0,+∞)(-1)^n(x-1)^n-∑(0,+∞)(-1)^n(1/2)[(x-1)/2)]^n |x-1|<1
=∑(0,+∞)(-1)^n[1-1/2^(n+1)](x-1)^n
积分得:f=∑(0,+∞)(-1)^n[1-1/2^(n+1)](x-1)^(n+1)/(n+1)+C
f(1)=-ln2代入得:C-ln2
所以:f=∑(0,+∞)(-1)^n[1-1/2^(n+1)](x-1)^(n+1)/(n+1)-ln2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询