如图,抛物线y=ax2+bx-2经过A(4,0),B(1,0)两点
(1)求出抛物线的解析式;(2)若P是抛物线上x轴上方的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合...
(1)求出抛物线的解析式;(2)若P是抛物线上x轴上方的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.
展开
2个回答
展开全部
(1) y = a(x - 4)(x - 1) = ax² - 5ax + 4a
4a = -2, a = -1/2
b = -5a = 5/2
y = -x²/2 + 5x/2 - 2
(2)
OA = 4, OC = 2, OA : OC = 2 : 1
要使以A,P,M为顶点的三角形与△OAC相似, 须PM : MA = 2 : 1或MA : PM = 2 : 1
M(m, 0), P(m, -m²/2 + 5m/2 - 2)
MA = 4 - m, MP = -m²/2 + 5m/2 - 2
(i) PM : MA = 2 : 1
-m²/2 + 5m/2 - 2 : 4 - m = 2 : 1
8 - 2m = -m²/2 + 5m/2 - 2
m² - 9m + 20 = (m - 4)(m - 5) = 0
m = 4, 点A, 舍去
m = 5, x轴下方
(ii)MA : PM = 2 : 1
-m²/2 + 5m/2 - 2 : 4 - m = 1 : 2
m² - 6m + 8 = (m - 2)(m - 4) = 0
m = 2, P(2, 1)
m = 4, 点A, 舍去
(3)
AC定长,显然抛物线过D的切线与AC平行时, AC上的高最大,即△DCA的面积最大。
AC斜率k = (0 + 2)/(4 - 0) = 1/2
切线y = x/2 + d
-x²/2 + 5x/2 - 2 = x/2 + d
x² - 4x + 4 + 2d = 0
∆ = 16 - 4(4 + 2d) = -8d = 0
d = 0
y = x/2
x² - 4x + 4 = (x - 2)² = 0
x = 2
D(2, 1)
4a = -2, a = -1/2
b = -5a = 5/2
y = -x²/2 + 5x/2 - 2
(2)
OA = 4, OC = 2, OA : OC = 2 : 1
要使以A,P,M为顶点的三角形与△OAC相似, 须PM : MA = 2 : 1或MA : PM = 2 : 1
M(m, 0), P(m, -m²/2 + 5m/2 - 2)
MA = 4 - m, MP = -m²/2 + 5m/2 - 2
(i) PM : MA = 2 : 1
-m²/2 + 5m/2 - 2 : 4 - m = 2 : 1
8 - 2m = -m²/2 + 5m/2 - 2
m² - 9m + 20 = (m - 4)(m - 5) = 0
m = 4, 点A, 舍去
m = 5, x轴下方
(ii)MA : PM = 2 : 1
-m²/2 + 5m/2 - 2 : 4 - m = 1 : 2
m² - 6m + 8 = (m - 2)(m - 4) = 0
m = 2, P(2, 1)
m = 4, 点A, 舍去
(3)
AC定长,显然抛物线过D的切线与AC平行时, AC上的高最大,即△DCA的面积最大。
AC斜率k = (0 + 2)/(4 - 0) = 1/2
切线y = x/2 + d
-x²/2 + 5x/2 - 2 = x/2 + d
x² - 4x + 4 + 2d = 0
∆ = 16 - 4(4 + 2d) = -8d = 0
d = 0
y = x/2
x² - 4x + 4 = (x - 2)² = 0
x = 2
D(2, 1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询