
设a,b,c均为实数,且满足a²+b²=c²求证:log2[1+(b+c/a)]+log2[1+(a
设a,b,c均为实数,且满足a²+b²=c²求证:log2[1+(b+c/a)]+log2[1+(a-c/b)]=1...
设a,b,c均为实数,且满足a²+b²=c²求证:log2[1+(b+c/a)]+log2[1+(a-c/b)]=1
展开
1个回答
展开全部
已知:a²+b²=c²,那么:
log2 [1+(b+c/a)]+log2 [1+(a-c/b)]
=log2 [(a+b+c)/a ]+ log2 [(b+a-c)/b]
=log2 [(a+b+c)/a *(b+a-c)/b]
=log2 [(a+b)²-c²]/(ab)
=log2 [(a+b)²-a²-b²]/(ab)
=log2 (2ab)/(ab)
=log2 2
=1
所以等式得证。
log2 [1+(b+c/a)]+log2 [1+(a-c/b)]
=log2 [(a+b+c)/a ]+ log2 [(b+a-c)/b]
=log2 [(a+b+c)/a *(b+a-c)/b]
=log2 [(a+b)²-c²]/(ab)
=log2 [(a+b)²-a²-b²]/(ab)
=log2 (2ab)/(ab)
=log2 2
=1
所以等式得证。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询