一道微分方程题目
展开全部
这是一阶齐次微分方程
(x^2+y^2)dx-xydy=0
dy/dx=(x²+y²)/(xy)
dy/dx=((x/y)²+1)/(x/y)
令u=y/x
则dy=du*x+dx*u
dy/dx=(du/dx)*x+u
代入得
(du/dx)*x+u=(u²+1)/u=u+1/u
du/dx=1/(xu)
u*du=dx/x
两边积分得
(1/2)u²=lnx+C
将u=y/x回代
(1/2)(y/x)²=(lnx)+C
y²=2x²((lnx)+C)
这是该微分方程的通解~
(x^2+y^2)dx-xydy=0
dy/dx=(x²+y²)/(xy)
dy/dx=((x/y)²+1)/(x/y)
令u=y/x
则dy=du*x+dx*u
dy/dx=(du/dx)*x+u
代入得
(du/dx)*x+u=(u²+1)/u=u+1/u
du/dx=1/(xu)
u*du=dx/x
两边积分得
(1/2)u²=lnx+C
将u=y/x回代
(1/2)(y/x)²=(lnx)+C
y²=2x²((lnx)+C)
这是该微分方程的通解~
更多追问追答
追问
哦,感谢啊,这一类方程都不能用分离变量的办法么?
追答
一般这类问题,可以直接提取dy/dx的先求出其表达式,在根据具体情况采用不同方式
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询