已知一次函数f(x)=ax+b与二次函数g(x)=aX2+bx+c满足a>b>c,且a+b+c=0(a,b,c属于R)
已知一次函数f(x)=ax+b与二次函数g(x)=aX2+bx+c满足a>b>c,且a+b+c=0(a,b,c属于R)(1)求证函数y=f(x)与y=g(x)的图像有两个...
已知一次函数f(x)=ax+b与二次函数g(x)=aX2+bx+c满足a>b>c,且a+b+c=0(a,b,c属于R)
(1)求证函数y=f(x)与y=g(x)的图像有两个不同交点A,B.
(2)设A1,B1是A,B两点在X轴上的射影,求线段A1B1长的取值范围
(3)求证:当x≤-根号3,f(x)<g(x)恒成立
要具体步骤
谢谢啊 展开
(1)求证函数y=f(x)与y=g(x)的图像有两个不同交点A,B.
(2)设A1,B1是A,B两点在X轴上的射影,求线段A1B1长的取值范围
(3)求证:当x≤-根号3,f(x)<g(x)恒成立
要具体步骤
谢谢啊 展开
2013-05-17
展开全部
(1)证明:
方程ax+b=ax^2+bx+c化为ax^2+(b-a)x+c-b=0
△=(b-a)^2-4a(c-b)=a^2-2ab+b^2-4ac+4ab=(a+b)^2-4ac
a+b+c=0,a+b=-c
△=c^2-4ac=c(c-4a)
a>b>c,且a+b+c=0,必有a>0,c<0,则△>0
故一次函数f(x)=ax+b与二次函数g(x)=ax^2+bx+c的图象有两个不同的交点
(2)设A1(x1,0),B1(x2,0)是A,B两点在x轴上的射影,则x1,x2是方程ax^2+(b-a)x+c-b=0的两根,
x1+x2=(a-b)/a,x1x2=(c-b)/a
A1B1=|x1-x2|=√(x1+x2)^2-4x1x2=……=√△/|a|
=[√(c^2-4ac)]/a
A1B1^2=(c^2-4ac)/a^2=(c/a)^2-4c/a=(c/a-2)^2-4
由a>b>c,且a+b+c=0知-2<c/a<-1/2
故9/4<A1B1^2<12
3/2<A1B1<2√3
(3)令h(x)=g(x)-f(x)=ax^2+(b-a)x+c-b
对称轴x=(a-b)/2a>0,x<(a-b)/2a时,y随x增大而减小。
h(-√3)=3a^2+√3(a-b)+c-b
=3a^2+√3(a+a+c)+c+a+c
=3a^2+(2√3+1)a+(√3+2)c
>3a^2+(2√3+1)a+(√3+2)(-2a)
方程ax+b=ax^2+bx+c化为ax^2+(b-a)x+c-b=0
△=(b-a)^2-4a(c-b)=a^2-2ab+b^2-4ac+4ab=(a+b)^2-4ac
a+b+c=0,a+b=-c
△=c^2-4ac=c(c-4a)
a>b>c,且a+b+c=0,必有a>0,c<0,则△>0
故一次函数f(x)=ax+b与二次函数g(x)=ax^2+bx+c的图象有两个不同的交点
(2)设A1(x1,0),B1(x2,0)是A,B两点在x轴上的射影,则x1,x2是方程ax^2+(b-a)x+c-b=0的两根,
x1+x2=(a-b)/a,x1x2=(c-b)/a
A1B1=|x1-x2|=√(x1+x2)^2-4x1x2=……=√△/|a|
=[√(c^2-4ac)]/a
A1B1^2=(c^2-4ac)/a^2=(c/a)^2-4c/a=(c/a-2)^2-4
由a>b>c,且a+b+c=0知-2<c/a<-1/2
故9/4<A1B1^2<12
3/2<A1B1<2√3
(3)令h(x)=g(x)-f(x)=ax^2+(b-a)x+c-b
对称轴x=(a-b)/2a>0,x<(a-b)/2a时,y随x增大而减小。
h(-√3)=3a^2+√3(a-b)+c-b
=3a^2+√3(a+a+c)+c+a+c
=3a^2+(2√3+1)a+(√3+2)c
>3a^2+(2√3+1)a+(√3+2)(-2a)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询