如图,在rt三角形ABC中,角C=90°,角A=60°,点E,F分别在AB,AC上,把角A沿着EF对折,使点A落在BC上点D处,

如图,在rt三角形ABC中,角C=90°,角A=60°,点E,F分别在AB,AC上,把角A沿着EF对折,使点A落在BC上点D处,且使ED垂直于BC1.猜测AE与BE的数量... 如图,在rt三角形ABC中,角C=90°,角A=60°,点E,F分别在AB,AC上,把角A沿着EF对折,使点A落在BC上点D处,且使ED垂直于BC
1.猜测AE与BE的数量关系,并说明理由
2.求证:四边形AEDF是菱形
展开
wzhq777
高粉答主

2013-05-18 · 醉心答题,欢迎关注
知道顶级答主
回答量:11.1万
采纳率:95%
帮助的人:2.1亿
展开全部
⑴∵∠A=60在,∴∠B=30°,
在RTΔBDE中,DE=1/2BE,
则折叠知,AE=DE,
∴AE=1/2BE(或BE=2AE)。
⑵由折叠知:∠FEA=∠FED,
∵DE⊥BC,∠C=90°,
∴DE∥AC,∴∠FED=∠EFA,
∴∠FEA=∠EFA,∴AE=AF,
∴AF=DE,
∴四边形AEDF是平行四边形(AF与DE平行且相等),
又AE=AF,
∴平行四边形AEDF是菱形。
问问山泉
2013-05-18 · TA获得超过1899个赞
知道小有建树答主
回答量:1134
采纳率:62%
帮助的人:362万
展开全部
1. 解:由题意得知:
△AEF≌△DEF
∵ DE=AE
又 ∵ ∠A=60°
∴ ∠B=30°
∠BDE=90°
∴ DE=1/2BE
∴ AE=1/2BE

2. ∵ △AEF≌△DEF
∴ ∠AEF=∠DEF
∵ DE∥AC ∠A=60°
∴∠DEA=180°-60°=120°
∠AEF=∠DEF=1/2∠DEA=60°
∴△AEF和△DEF 都是等边三角形
∴ AE=DE=DF=FA ∠DEF+∠DEA=180° ∴ DF∥AE
又 ∵DE∥AC
∴ 四边形AEDF是菱形
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式