如图,AB是⊙O的直径,P为AB延长线上任意一点,C为半圆ACB的中点,PD切⊙O于点D,连接CD交
如图,AB是⊙O的直径,P为AB延长线上任意一点,C为半圆ACB的中点,PD切⊙O于点D,连接CD交AB于点E.求证:(1)PD=PE;(2)PE2=PA•P...
如图,AB是⊙O的直径,P为AB延长线上任意一点,C为半圆ACB的中点,PD切⊙O于点D,连接CD交AB于点E.
求证:(1)PD=PE;
(2)PE2=PA•PB. 展开
求证:(1)PD=PE;
(2)PE2=PA•PB. 展开
展开全部
证明:(1)连接OC、OD,
∵C是半圆ACB的中点
∴∠COA=∠COB
∵∠COA ∠COB=180°
∴∠COA=∠COB=90°
∴OD⊥PD,OC⊥AB.
∴∠PDE=90°-∠ODE,
∠PED=∠CEO=90°-∠C,
又∵OC=OD,
∴∠C=∠ODE,
∴∠PDE=∠PED.
∴PE=PD.
(2)连接AD、BD,
∴∠ADB=90°.
∵∠BDP=90°-∠ODB,∠A=90°-∠OBD,
又∵∠OBD=∠ODB,∴∠BDP=∠A,
∵∠P=∠P,
∴△PDB∽△PAD.
∴(PD/PB)=(PA/PD)
∴PD平方=PA•PB.
∴PE平方=PA•PB
∵C是半圆ACB的中点
∴∠COA=∠COB
∵∠COA ∠COB=180°
∴∠COA=∠COB=90°
∴OD⊥PD,OC⊥AB.
∴∠PDE=90°-∠ODE,
∠PED=∠CEO=90°-∠C,
又∵OC=OD,
∴∠C=∠ODE,
∴∠PDE=∠PED.
∴PE=PD.
(2)连接AD、BD,
∴∠ADB=90°.
∵∠BDP=90°-∠ODB,∠A=90°-∠OBD,
又∵∠OBD=∠ODB,∴∠BDP=∠A,
∵∠P=∠P,
∴△PDB∽△PAD.
∴(PD/PB)=(PA/PD)
∴PD平方=PA•PB.
∴PE平方=PA•PB
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询