计算三重积分∫∫∫(x^2+y^2+z^2)dv,其中Ω由z=x^2+y^2+z^2所围成的闭区域。
2个回答
展开全部
结果为:16π/3
解题过程如下:
解:原式=∫<0,2π>dθ∫<0,2>rdr∫<r^2/2,2>r^2dz (作柱面坐标变换)
=2π∫<0,2>r^3(2-r^2/2)dr
=2π∫<0,2>(2r^3-r^5/2)dr
=2π(2^4/2-2^6/12)
=2π(8/3)
=16π/3
扩展资料
求函数积分的方法:
设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C。
其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。
积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的实函数f(x),在区间[a,b]上的定积分。
若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。
展开全部
z = x² + y² + z²
x² + y² + z² - z + 1/4 = 1/4
x² + y² + (z - 1/2)² = (1/2)²
{ x = rsinφcosθ
{ y = rsinφsinθ
{ z = rcosφ
Ω:r² = rcosφ → r = cosφ
∫∫∫ (x² + y² + z²) dV
= ∫∫∫ r² * r²sinφ dV = ∫∫∫ r⁴sinφ dV
= ∫(0→2π) ∫(0→π/2) ∫(0→cosφ) r⁴sinφ drdφdθ
= 2π ∫(0→π/2) sinφ * (1/5)r⁵:(0→cosφ) dφ
= 2π/5 ∫(0→π/2) cos⁵φsinφ dφ
= - 2π/5 ∫(0→π/2) cos⁵φ d(cosφ)
= - 2π/5 * (1/6)cosφ:[0→π/2]
= - π/15 * (0 - 1)
= π/15
x² + y² + z² - z + 1/4 = 1/4
x² + y² + (z - 1/2)² = (1/2)²
{ x = rsinφcosθ
{ y = rsinφsinθ
{ z = rcosφ
Ω:r² = rcosφ → r = cosφ
∫∫∫ (x² + y² + z²) dV
= ∫∫∫ r² * r²sinφ dV = ∫∫∫ r⁴sinφ dV
= ∫(0→2π) ∫(0→π/2) ∫(0→cosφ) r⁴sinφ drdφdθ
= 2π ∫(0→π/2) sinφ * (1/5)r⁵:(0→cosφ) dφ
= 2π/5 ∫(0→π/2) cos⁵φsinφ dφ
= - 2π/5 ∫(0→π/2) cos⁵φ d(cosφ)
= - 2π/5 * (1/6)cosφ:[0→π/2]
= - π/15 * (0 - 1)
= π/15
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询