设b>0,数列an满足a1=b,an=nban-1/an-1+n-1(n≥2)求数列an通向公式。
1个回答
展开全部
an=nba(n-1)/(a(n-1)+n-1)
an.a(n-1) +(n-1)an = nba(n-1)
1+(n-1)[ 1/a(n-1)] = nb (1/an)
(n-1)( 1/a(n-1) +[1/(1-b)]/(n-1)) = nb( 1/an + [1/(1-b)]/n )
( 1/an + [1/(1-b)]/n ) /( 1/a(n-1) +[1/(1-b)]/(n-1)) = (1/b) (n-1)/n
( 1/an + [1/(1-b)]/n )/(1/a1- 1/(1-b)) = (1/b) 1/n
( 1/an + [1/(1-b)]/n ) = (1-2b)/[b^2(1-b)] (1/n)
1/an = (1/n) [1/(1-b)] [ (1-2b)/b^2 - 1]
an = n(1-b)/ [ (1-2b)/b^2 - 1]
= n(1-b) b^2/ (1-2b-b^2)
an.a(n-1) +(n-1)an = nba(n-1)
1+(n-1)[ 1/a(n-1)] = nb (1/an)
(n-1)( 1/a(n-1) +[1/(1-b)]/(n-1)) = nb( 1/an + [1/(1-b)]/n )
( 1/an + [1/(1-b)]/n ) /( 1/a(n-1) +[1/(1-b)]/(n-1)) = (1/b) (n-1)/n
( 1/an + [1/(1-b)]/n )/(1/a1- 1/(1-b)) = (1/b) 1/n
( 1/an + [1/(1-b)]/n ) = (1-2b)/[b^2(1-b)] (1/n)
1/an = (1/n) [1/(1-b)] [ (1-2b)/b^2 - 1]
an = n(1-b)/ [ (1-2b)/b^2 - 1]
= n(1-b) b^2/ (1-2b-b^2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询