b>0,数列{an}满足:a1=b,an=nban-1/(an-1+n-1)(n≥2). ⑴求数列{an}的通项公式

⑵证明:对于一切正整数n,2an≤bn+1+1... ⑵证明:对于一切正整数n,2an≤bn+1+1 展开
tllau38
高粉答主

2012-08-27 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
an=nba(n-1)/(a(n-1)+n-1)
an.a(n-1) +(n-1)an = nba(n-1)
1+(n-1)[ 1/a(n-1)] = nb (1/an)
(n-1)( 1/a(n-1) +[1/(1-b)]/(n-1)) = nb( 1/an + [1/(1-b)]/n )
( 1/an + [1/(1-b)]/n ) /( 1/a(n-1) +[1/(1-b)]/(n-1)) = (1/b) (n-1)/n
( 1/an + [1/(1-b)]/n )/(1/a1- 1/(1-b)) = (1/b) 1/n
( 1/an + [1/(1-b)]/n ) = (1-2b)/[b^2(1-b)] (1/n)
1/an = (1/n) [1/(1-b)] [ (1-2b)/b^2 - 1]
an = n(1-b)/ [ (1-2b)/b^2 - 1]
= n(1-b) b^2/ (1-2b-b^2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式