数列an中,a1=1,Nan+1=(n+1)an+1,求an

轩轩智慧先锋
高能答主

2019-07-07 · 希望是生命中的那束光,照亮我们的未来。
轩轩智慧先锋
采纳数:2714 获赞数:533628

向TA提问 私信TA
展开全部

结果为:2n-1

解题过程如下:

na(n+1)=(n+1)an +1=(n+1)an +(n+1)-n

n[a(n+1)+1]=(n+1)(an +1)

等式两边同除以n(n+1)

[a(n+1)+1]/(n+1)=(an +1)/n

(a1+1)/1=(1+1)/1=2

数列{(an +1)/n}是各项均为2的常数数列

(an +1)/n=2

an +1=2n

an=2n-1

n=1时,a1=2-1=1,同样满足

∴数列{an}的通项公式为an=2n-1

扩展资料

求数列方法:

对于一个数列{ an },如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为 d ;从第一项 a1到第n项 an的总和,记为Sn。

对于一个数列 {an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比 q ;从第一项a1 到第n项an 的总和,记为Tn 。

数列递推公式中同时含有an 和an+1的情况称为一阶数列,显然,等差数列的递推式为an=an-1 + d , 而等比数列的递推式为 an =an-1 * q ; 这二者可看作是一阶数列的特例。

故可定义一阶递归数列形式为: an+1= A *an + B ········☉ , 其中A和B 为常系数。

那么,等差数列就是A=1 的特例,而等比数列就是B=0 的特例。

可令an+1 - ζ = A * (an - ζ )········① 是原式☉变形后的形式,即再采用待定系数的方式求出 ζ 的值, 整理后得an+1 = A*an + ζ - A*ζ 。

ζ - A*ζ = B即解出 ζ = B / (1-A)。回代后,令 bn =an - ζ ,化为bn+1 =A*bn , 即化为了一个以(a1 - ζ )为首项,以A为公比的等比数列,可求出bn的通项公式,进而求出 {an} 的通项公式。

xuzhouliuying
高粉答主

推荐于2017-10-07 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
解:
na(n+1)=(n+1)an +1=(n+1)an +(n+1)-n
n[a(n+1)+1]=(n+1)(an +1)
等式两边同除以n(n+1)
[a(n+1)+1]/(n+1)=(an +1)/n
(a1+1)/1=(1+1)/1=2
数列{(an +1)/n}是各项均为2的常数数列。
(an +1)/n=2
an +1=2n
an=2n-1
n=1时,a1=2-1=1,同样满足。
数列{an}的通项公式为an=2n-1。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
jinlunfengye
2012-12-26 · 超过24用户采纳过TA的回答
知道答主
回答量:50
采纳率:0%
帮助的人:63万
展开全部
是n*an + 1 = (n+1) *a(n+1) 吗?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式