矩阵的某两行位置互换要不要变号
矩阵的行变换后不要变号,行变换后的矩阵与原矩阵行等价。矩阵的初等变换不需要变号。只有在行列式中的行(列)变换后要变号。
行列式:本质上是一个常数,既然是常数就有正有负,在计算的时候要特别注意符号的变化,比如交换了某两行(列),符号就改变了。
矩阵:就是将一些数字(这里指的是数字阵)整齐地放在一起,比如放为6行5列。
扩展资料:
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。
将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。
数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。
针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。
行列式需要变号,矩阵不需要,因为对矩阵实施初等变换后,得到的矩阵不是原来的矩阵,但矩阵的秩不会变。
首先,矩阵没有符号这一说法,说的是行列式。矩阵是没有值的,矩阵就是一个数阵,互换两行属于初等行变换。而行列式是个值,所以,互换行列式的两行,行列式的值要变号。
1、交换矩阵的两行(对调i,j,两行记为ri,rj);
2、以一个非零数k乘矩阵的某一行所有元素(第i行乘以k记为ri×k);
3、把矩阵的某一行所有元素乘以一个数k后加到另一行对应的元素(第j行乘以k加到第i行记为ri+krj)。
扩展资料:
一般采用消元法来解线性方程组,而消元法实际上是反复对方程进行变换,而所做的变换也只是以下三种基本的变换所构成:
(1)用一非零的数乘以某一方程
(2)把一个方程的倍数加到另一个方程
(3)互换两个方程的位置
于是,将变换(1)、(2)、(3)称为线性方程组的初等变换。
参考资料来源:百度百科-初等矩阵