高数问题空间解析几何

求由上半球面z=√(2-x^2-y^2)及旋转抛物面z=x^2+y^2围成的空间立体在xoy面上的投影... 求由上半球面z=√(2-x^2-y^2)及旋转抛物面z=x^2+y^2围成的空间立体在xoy面上的投影 展开
 我来答
匿名用户
2013-05-22
展开全部
上半球面与旋转抛物面的交线的方程是方程组:z=√(2-x^2-y^2),z=x^2+y^2. 消去z得x^2+y^2=1,所以两个曲面围成立体在xoy面上的投影区域是D:x^2+y^2≤1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式