求高数大神解决啊,利用级数的性质和收敛的必要条件判别下列级数的收敛性,只把第一小题做了就好啦,谢谢

algbraic
2013-05-23 · TA获得超过4924个赞
知道大有可为答主
回答量:1281
采纳率:100%
帮助的人:753万
展开全部
这是刚学级数吗?
首先通项1/2^n-1/3^n > 0, 是正项级数.
由1/2^n-1/3^n < 1/2^n, 而等比级数∑{1 ≤ n} 1/2^n = 1.
可知∑{1 ≤ n} (1/2^n-1/3^n) < 1, 故级数收敛.

如果学了比较判别法, 可以直接由∑{1 ≤ n} 1/2^n收敛证明原级数收敛.
另外其实可以直接用等比数列求和得到∑{1 ≤ n ≤ m} (1/2^n-1/3^n) = 1-1/2^m-(1-1/3^m)/2.
并求得m趋于无穷时的极限为1/2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式