统计学中区间估计与假设检验的区别与联系? 40
3个回答
展开全部
1、区别是:用统计量推断参数时,如果参数未知,则这种推断叫参数估计——用统计量估计未知的参数;如果参数已知(或假设已知),需要利用统计量检验已知的参数是否靠谱,此时的统计推断即为假设检验。
2、联系是:二者都属于推断统计——利用样本的数据得到样本统计量(statistic),然后做出对总体参数(parameter)的论断。
3、举例来说:推断全校学生(总体)的平均每天上网时间(参数)。
如果参数未知,要靠抽样的数据进行推断,此时进行的就是参数估计,用抽样得到的统计量——样本平均上网时间(比如说3小时)来估计全校学生平均上网时间。
如果先前有人已得出得出论断,学生平均上网时间为5小时(参数已知),而你不知该参数可不可信,这时做的就是假设检验,通过样本得到的平均3小时的上网时间告诉你,先前关于总体的信息很可能是不靠谱的,无法通过检验。
2、联系是:二者都属于推断统计——利用样本的数据得到样本统计量(statistic),然后做出对总体参数(parameter)的论断。
3、举例来说:推断全校学生(总体)的平均每天上网时间(参数)。
如果参数未知,要靠抽样的数据进行推断,此时进行的就是参数估计,用抽样得到的统计量——样本平均上网时间(比如说3小时)来估计全校学生平均上网时间。
如果先前有人已得出得出论断,学生平均上网时间为5小时(参数已知),而你不知该参数可不可信,这时做的就是假设检验,通过样本得到的平均3小时的上网时间告诉你,先前关于总体的信息很可能是不靠谱的,无法通过检验。
展开全部
统计分析包括统计描述和统计推断。统计推断又分为参数估计和假设检验。参数估计再分为点估计和区间估计。区间估计是指:用已知样本统计量和标误,确定一个有概率意义的区间;而假设检验利用反证法原理,首先依据两种可能性建立两种假设,再从第一种假设出发,计算求出特定统计量(如t,F,卡方等),用“小概率推断原理”(α<0.05)判断该种假设是否成立。
区间估计可以理解为正向求解问题,假设检验可以理解为逆向求解问题,二者可以看作同一个问题的不同表述方式。
区间估计可以理解为正向求解问题,假设检验可以理解为逆向求解问题,二者可以看作同一个问题的不同表述方式。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询