设数列{an}的前n项和为Sn,且Sn=2an-3n,(n∈N*).(Ⅰ)证明数列{an+3}为等比数列; (Ⅱ)记bn=6n
设数列{an}的前n项和为Sn,且Sn=2an-3n,(n∈N*).(Ⅰ)证明数列{an+3}为等比数列;(Ⅱ)记bn=6n(6×2n?Sn),求{bn}的前n项和Tn....
设数列{an}的前n项和为Sn,且Sn=2an-3n,(n∈N*).(Ⅰ)证明数列{an+3}为等比数列; (Ⅱ)记bn=6n(6×2n?Sn),求{bn}的前n项和Tn.
展开
似茗玥7954
推荐于2016-10-15
·
TA获得超过653个赞
关注
(Ⅰ)令n=1,S
1=2a
1-3,∴a
1=3,
由S
n+1=2a
n+1-3(n+1),S
n=2a
n-3n,
两式相减,得a
n+1=2a
n+1-2a
n-3,
则a
n+1=2a
n+3,a
n+1+3=2(a
n+3),
=2,
∴{a
n+3}为公比为2的等比数列;
(Ⅱ)由(Ⅰ)知,
an+3=(a1+3)?2n?1=6?2n?1,
∴
an=6?2n?1?3,
Sn=?3n=6?2n?3n?6.
∴
bn====?,
∴
Tn=(1?)+(?)+(?)+…+(?)=1+??=??=.
收起
为你推荐: