已知:如图,D是△ABC内的任意一点,求证:∠BDC=∠1+∠A+∠2

wangcai3882
2013-05-24 · 知道合伙人教育行家
wangcai3882
知道合伙人教育行家
采纳数:20214 获赞数:108205
本人擅长中学阶段数、理、化、生等理科知识,尤其是数学。高中时曾参加全国数学竞赛并获奖,期望能为你答疑

向TA提问 私信TA
展开全部

证明:

延长BD与AC交于点E,则

根据外角关系得

∵∠1+∠A=∠CED  

   ∠2+∠CED=∠BDC

∴∠2+∠1+∠A=∠BDC(等量代换)

即∠BDC=∠1+∠A+∠2

彩雅小P
推荐于2019-08-02 · TA获得超过777个赞
知道答主
回答量:694
采纳率:0%
帮助的人:164万
展开全部
解:(1)过A点作EF∥BC,
∵EF∥BC,
∴∠B=∠EAB,∠C=∠CAF,
∵∠EAB+∠A+∠CAF=180°,
∴∠A+∠B+∠C=180°;

(2)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,
又∵∠AOD=∠BOC(对顶角相等),
∴∠A+∠D=∠C+∠B;

(3)∵AP、CP是∠DAB、∠BCD的平分线,
∴∠1=∠2,∠3=∠4,
∵∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,
∴∠D-∠P=∠P-∠B,
∴∠P=
1
2
(∠D+∠B);

(4)∵∠CAD+∠D=∠CFG,∠B+∠E=∠CGF,
又∵∠C+∠CFG+∠CGF=180°,
∴∠CAD+∠B+∠C+∠D+∠E=180°;
故答案为:180°,∠A+∠D=∠C+∠B,∠P=
1
2
(∠D+∠B),180°.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式