已知定义在R上的函数f(x)=x2(ax-3),其中a为常数.(Ⅰ)若x=1是函数f(x)的一个极值点,求a的值;

已知定义在R上的函数f(x)=x2(ax-3),其中a为常数.(Ⅰ)若x=1是函数f(x)的一个极值点,求a的值;(Ⅱ)若x∈[0,2]时,函数g(x)=f(x)+f'(... 已知定义在R上的函数f(x)=x2(ax-3),其中a为常数.(Ⅰ)若x=1是函数f(x)的一个极值点,求a的值;(Ⅱ)若x∈[0,2]时,函数g(x)=f(x)+f'(x)在x=0处取得最大值,求正数a的取值范围. 展开
 我来答
小飞哥lO贵5
推荐于2016-10-30 · TA获得超过276个赞
知道答主
回答量:113
采纳率:0%
帮助的人:123万
展开全部
(I)∵f(x)=ax3-3x2,∴f'(x)=3ax2-6x,
∵x=1是f(x)的一个极值点,∴f'(1)=3a-6=0,
∴a=2.
(II)g(x)=ax3+3(a-1)x2-6x(a>0)
g'(x)=3ax2+6(a-1)x-6,△=36(a-1)2+72a=36(a2+1),
∴f'(x)=0有两个实根,设这两个实根为x1,x2
x1x2=?
2
a
<0

设x1<0<x2,当0<x2<2时,g(x2)为极小值,
所以g(x)在[0,2]上的最大值只能为g(0)或g(2)
当x2≥2时,g(x)在[0,2]上单调递减,g(x)的最大值为g(0),
所以g(x)在[0,2]上的最大值只能为g(0)或g(2),
又已知g(x)在x=0处取得最大值,所以g(0)≥g(2),
0≥20a?24,解得a≤
6
5
,∴0<a≤
6
5
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式