如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于O点,且BE=BF,∠B
如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于O点,且BE=BF,∠BEF=2∠BAC。(1)求证:OE=OF;...
如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于O点,且BE=BF,∠BEF=2∠BAC。 (1)求证:OE=OF;(2)若BC= ,求AB的长。
展开
小沐煌9284
推荐于2017-12-15
·
超过65用户采纳过TA的回答
关注
解:(1)证明:∵四边形ABCD是矩形,∴DC∥AB。 ∴∠OAE=∠OCF,∠OEA=∠OFC。 又∵AE=CF,∴△OEA≌△OFC(ASA)。 ∴OE=OF。 (2)如图,连接OB, ∵BE=BF,OE=OF,∴BO⊥EF,∠ABO=∠OBF。 ∵∠BEF=2∠BAC,∴∠OBE=∠BAC。 又∵矩形ABCD中,∠ABC=90 0 ,∴∠BOE=∠ABC=90 0 。 ∴△OBE∽△BAC。∴ ![](https://iknow-pic.cdn.bcebos.com/279759ee3d6d55fb93e052946e224f4a20a4dd59?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) 。 ∵∠BEF=2∠BAC,∴∠OAE=∠AOE。∴AE=OE。 设AB=x,AE=OE=y,则 ![](https://iknow-pic.cdn.bcebos.com/d1a20cf431adcbef292f5ab4afaf2edda3cc9f6c?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) 。 ∵BC= ![](https://iknow-pic.cdn.bcebos.com/f2deb48f8c5494ee70392bab2ef5e0fe99257e6c?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,∴ ![](https://iknow-pic.cdn.bcebos.com/77094b36acaf2eddc0ea6d5b8e1001e93901936c?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) 。 由(1)△OEA≌△OFC,得AO=CO,∴ ![](https://iknow-pic.cdn.bcebos.com/4a36acaf2edda3cc18ff9c9202e93901213f926c?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) 。 ∴ ![](https://iknow-pic.cdn.bcebos.com/adaf2edda3cc7cd9e836106b3a01213fb80e916c?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) 。∴ ![](https://iknow-pic.cdn.bcebos.com/f11f3a292df5e0fe1d03adb35f6034a85edf726c?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ①。 又∵ ![](https://iknow-pic.cdn.bcebos.com/8c1001e93901213fd1286a6e57e736d12f2e956c?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,即 ![](https://iknow-pic.cdn.bcebos.com/55e736d12f2eb938f4765e40d6628535e5dd6f6c?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) , 化简,得 ![](https://iknow-pic.cdn.bcebos.com/2cf5e0fe9925bc31da46252a5ddf8db1cb13706c?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ②。 由①②得 ![](https://iknow-pic.cdn.bcebos.com/0df3d7ca7bcb0a46dd04af8b6863f6246b60af59?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,两边平方并化简,得 ![](https://iknow-pic.cdn.bcebos.com/7acb0a46f21fbe095a78e7a668600c338744ad59?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) , ∴ ![](https://iknow-pic.cdn.bcebos.com/eaf81a4c510fd9f9ed3171db262dd42a2834a459?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,∴根据x的实际意义,得x=6。 ∴若BC= ![](https://iknow-pic.cdn.bcebos.com/f2deb48f8c5494ee70392bab2ef5e0fe99257e6c?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) , AB的长为6。 |
(1)由矩形的性质,结合已知可根据ASA证出△OEA≌△OFC,从而得出结论 (2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,∠ABO=∠OBF,从而得到△OBE∽△BAC,设出未知数和参数:AB=x,AE=OE=y,可得 ![](https://iknow-pic.cdn.bcebos.com/f11f3a292df5e0fe1d03adb35f6034a85edf726c?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,在Rt△OBE中应用勾股定理得 ![](https://iknow-pic.cdn.bcebos.com/2cf5e0fe9925bc31da46252a5ddf8db1cb13706c?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,二者联立,解出x即可。 |
收起
为你推荐: