已知0<a<1,则函数y=a|x|-|logax|的零点的个数为______
2个回答
展开全部
∵0<a<1,函数y=a|x|-|logax|的零点的个数就等于方程=a|x|=|logax|的解的个数,即函数y=a|x|与 y=|logax|的交点的个数.
如图所示:
故函数y=a|x|与 y=|logax|的交点的个数为2,
故答案为 2.
附图:
名词解释
对数函数
一般地,如果a(a大于0,且a不等于1)的b次幂等于N(N>0),那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,可表示为x=a^y。因此指数函数里对于a的规定,同样适用于对数函数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询