(2012?黔东南州)如图,已知抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式
(2012?黔东南州)如图,已知抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作M...
(2012?黔东南州)如图,已知抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.
展开
1个回答
展开全部
(1)设抛物线的解析式为:y=a(x+1)(x-3),则:
a(0+1)(0-3)=3,a=-1;
∴抛物线的解析式:y=-(x+1)(x-3)=-x2+2x+3.
(2)设直线BC的解析式为:y=kx+b,则有:
,
解得
;
故直线BC的解析式:y=-x+3.
已知点M的横坐标为m,MN∥y,则M(m,-m+3)、N(m,-m2+2m+3);
∴故MN=-m2+2m+3-(-m+3)=-m2+3m(0<m<3).
(3)如图;
∵S△BNC=S△MNC+S△MNB=
MN(OD+DB)=
MN?OB,
∴S△BNC=
(-m2+3m)?3=-
(m-
)2+
(0<m<3);
∴当m=
时,△BNC的面积最大,最大值为
.
a(0+1)(0-3)=3,a=-1;
∴抛物线的解析式:y=-(x+1)(x-3)=-x2+2x+3.
(2)设直线BC的解析式为:y=kx+b,则有:
|
解得
|
故直线BC的解析式:y=-x+3.
已知点M的横坐标为m,MN∥y,则M(m,-m+3)、N(m,-m2+2m+3);
∴故MN=-m2+2m+3-(-m+3)=-m2+3m(0<m<3).
(3)如图;
∵S△BNC=S△MNC+S△MNB=
1 |
2 |
1 |
2 |
∴S△BNC=
1 |
2 |
3 |
2 |
3 |
2 |
27 |
8 |
∴当m=
3 |
2 |
27 |
8 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询