观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c根据你发现的规律,请写出(1)
观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1时...
观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1时,求b、c的值;(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.
展开
1个回答
展开全部
(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c-b=1
∵a=19,a2+b2=c2,
∴192+b2=(b+1)2,
∴b=180,
∴c=181;
(2)通过观察知c-b=1,
∵(2n+1)2+b2=c2,
∴c2-b2=(2n+1)2,
(b+c)(c-b)=(2n+1)2,∴b+c=(2n+1)2,
又c=b+1,
∴2b+1=(2n+1)2,
∴b=2n2+2n,c=2n2+2n+1;
(3)由(2)知,2n+1,2n2+2n,2n2+2n+1为一组勾股数,
当n=7时,2n+1=15,112-111=1,
但2n2+2n=112≠111,
∴15,111,112不是一组勾股数.
∵a=19,a2+b2=c2,
∴192+b2=(b+1)2,
∴b=180,
∴c=181;
(2)通过观察知c-b=1,
∵(2n+1)2+b2=c2,
∴c2-b2=(2n+1)2,
(b+c)(c-b)=(2n+1)2,∴b+c=(2n+1)2,
又c=b+1,
∴2b+1=(2n+1)2,
∴b=2n2+2n,c=2n2+2n+1;
(3)由(2)知,2n+1,2n2+2n,2n2+2n+1为一组勾股数,
当n=7时,2n+1=15,112-111=1,
但2n2+2n=112≠111,
∴15,111,112不是一组勾股数.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询