如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,-3), B(4,-1). 10

(1)若P(p,0)是x轴上的一个动点,则当p=()时,△PAB的周长最短;(2)若C(a,0),D(a+1,0)是x轴上的两个动点,则当a=()时,四边形ABDC的周长... (1)若P(p,0)是x轴上的一个动点,则当p=( )时,△PAB的周长最短;
(2)若C(a,0),D(a+1,0)是x轴上的两个动点,则当a=()时,四边形ABDC的周长最短;
要过程
展开
 我来答
边林海莲
2013-05-26 · TA获得超过555个赞
知道小有建树答主
回答量:517
采纳率:0%
帮助的人:105万
展开全部
有关线段和最小的问题,数学模型是对称解决
点B的对称点B'(4,1),连接B'A与x轴交点为P,可用代数法求直线AB'的解析式,令y=0,可求得P的坐标。也可用几何相似。
作A关于纵轴的对称点E,点B关于横轴的对称点F,连接EF于坐标轴的交点分别为C,D,。。。。
赠送你一些同类型题
希望对你有帮助
希望采纳

(2012四川凉山8分)在学习轴对称的时候,老师让同学们思考课本中的探究题。

如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?
你可以在l上找几个点试一试,能发现什么规律?你可以在上找几个点试一试,能发现什么规律?

聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:
①作点B关于直线l的对称点B′.
②连接AB′交直线l于点P,则点P为所求.
请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.
(1)在图中作出点P(保留作图痕迹,不写作法).
(2)请直接写出△PDE周长的最小值:

【答案】解:(1)作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求。

(2)8.
【分析】(1)根据提供材料DE不变,只要求出DP+PE的最小值即可,作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求。
(2)利用中位线性质以及勾股定理得出D′E的值,即可得出答案:
∵点D、E分别是AB、AC边的中点,∴DE为△ABC中位线。
∵BC=6,BC边上的高为4,∴DE=3,DD′=4。
∴。
∴△PDE周长的最小值为:DE+D′E=3+5=8。
(2012湖北鄂州3分)在锐角三角形ABC中,BC=,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是 ▲ 。

【答案】4。
【分析】如图,在BA上截取BE=BN,连接EM。
∵∠ABC的平分线交AC于点D,∴∠EBM=∠NBM。
在△AME与△AMN中,∵BE=BN ,∠EBM=∠NBM,BM=BM,
∴△BME≌△BMN(SAS)。∴ME=MN。∴CM+MN=CM+ME≥CE。
又∵CM+MN有最小值,∴当CE是点C到直线AB的距离时,CE取最小值。
∵BC=,∠ABC=45°,∴CE的最小值为sin450=4。
∴CM+MN的最小值是4。
3.(2011广西贵港2分)如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC的中点,点P为线段EF上一个动点,连接BP、GP,则△BPG的周长的最小值是 _ ▲ .

(2012浙江台州4分)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为【 】

  A. 1 B. C. 2 D.+1
【答案】B。
【分析】分两步分析:
(1)若点P,Q固定,此时点K的位置:如图,作点P关于BD的对称点P1,连接P1Q,交BD于点K1。
由线段中垂线上的点到线段两端距离相等的性质,得
P1K1 = P K1,P1K=PK。
由三角形两边之和大于第三边的性质,得P1K+QK>P1Q= P1K1+Q K1= P K1+Q K1。
∴此时的K1就是使PK+QK最小的位置。
(2)点P,Q变动,根据菱形的性质,点P关于BD的对称点P1在AB上,即不论点P在BC上任一点,点P1总在AB上。
因此,根据直线外一点到直线的所有连线中垂直线段最短的性质,得,当P1Q⊥AB时P1Q最短。
过点A作AQ1⊥DC于点Q1。 ∵∠A=120°,∴∠DA Q1=30°。
又∵AD=AB=2,∴P1Q=AQ1=AD·cos300=。
综上所述,PK+QK的最小值为。故选B。
1. (2012山东青岛3分)如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点
C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最
短距离为 ▲ cm.

【答案】15。
【分析】如图,圆柱形玻璃杯展开(沿点A竖直剖开)后侧面是一个长18宽12的矩形,作点A关于杯上沿MN的对称点B,连接BC交MN于点P,连接BM,过点C作AB的垂线交剖开线MA于点D。
由轴对称的性质和三角形三边关系知AP+PC为蚂蚁到达蜂蜜
的最短距离,且AP=BP。
由已知和矩形的性质,得DC=9,BD=12。
在Rt△BCD中,由勾股定理得。
∴AP+PC=BP+PC=BC=15,即蚂蚁到达蜂蜜的最短距离为15cm。
(2012福建莆田4分)点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角
坐标系如图所示.若P是x轴上使得 的值最大的点,Q是y轴上使得QA十QB的值最小的点,
则 =  ▲  .

【答案】5。
【分析】连接AB并延长交x轴于点P,作A点关于y轴的对称点A′连接A′B交y轴于点Q,求出点Q与y轴的交点坐标即可得出结论:
连接AB并延长交x轴于点P,
由三角形的三边关系可知,点P即为x轴上使得|PA-PB|的值最大的点。
∵点B是正方形ADPC的中点,
∴P(3,0)即OP=3。
作A点关于y轴的对称点A′连接A′B交y轴于点Q,则A′B即为QA+QB的最小值。
∵A′(-1,2),B(2,1),
设过A′B的直线为:y=kx+b,
则 ,解得 。∴Q(0, ),即OQ=。
∴OP•OQ=3×=5。
(2012四川攀枝花4分)如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为 ▲ .

【答案】。
【分析】连接DE,交BD于点P,连接BD。
∵点B与点D关于AC对称,∴DE的长即为PE+PB的最小值。
∵AB=4,E是BC的中点,∴CE=2。
在Rt△CDE中,。
(2012广西贵港2分)如图,MN为⊙O的直径,A、B是O上的两点,过A作AC⊥MN于点C,
过B作BD⊥MN于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,则PA+PB的最小值是
  ▲  。

【答案】14。
【分析】∵MN=20, ∴⊙O的半径=10。
连接OA、OB,
在Rt△OBD中,OB=10,BD=6,
∴OD===8。
同理,在Rt△AOC中,OA=10,AC=8,
∴OC===6。
∴CD=8+6=14。
作点B关于MN的对称点B′,连接AB′,则AB′即为PA+PB的最小值,B′D=BD=6,过点B′
作AC的垂线,交AC的延长线于点E。
在Rt△AB′E中,∵AE=AC+CE=8+6=14,B′E=CD=14,
∴AB′===14。
(2011辽宁营口3分)如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a= ▲ 时,AC+BC的值最小.

3.(2011山东济宁8分)去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河的同一侧张村A和李村B送水。经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为轴建立直角坐标系(如图)。两村的坐标分别为A(2,3),B(12,7)。
(1) 若从节约经费考虑,水泵站建在距离大桥O多远的地方可使所用输水管道最短?
(2) 水泵站建在距离大桥O多远的地方,可使它到张村、李村的距离相等?

4.(2011辽宁本溪3分)如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值【 】

A、2 B、4 C、 D、
5.(2011辽宁阜新3分)如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的
任意一点,当△AEF的周长最小时,则DF的长为【 】

A.1 B.2 C.3 D.4
6.(2011贵州六盘水3分)如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的
中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是 【 】

A.3 B.4 C.5 D.6
7.(2011甘肃天水4分)如图,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,对角线AC平分∠BAD,点E在AB上,且AE=2(AE<AD),点P是AC上的动点,则PE+PB的最小值是 ▲ .

(2012湖北十堰6分)阅读材料:
例:说明代数式 的几何意义,并求它的最小值.
解: ,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则可以看成点P与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.
设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=3,即原式的最小值为3。

根据以上阅读材料,解答下列问题:
(1)代数式的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B 的距离之和.(填写点B的坐标)
(2)代数式 的最小值为 .
【答案】解:(1)(2,3)。
(2)10。
【考点】坐标与图形性质,轴对称(最短路线问题)。
【分析】(1)∵原式化为的形式,
∴代数式的值可以看成平面直角坐标系中点P(x,0)与点A
(1,1)、点B(2,3)的距离之和。
(2)∵原式化为的形式,
∴所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)
的距离之和。
如图所示:设点A关于x轴的对称点为A′,则PA=PA′,
∴求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B
间的直线段距离最短。
∴PA′+PB的最小值为线段A′B的长度。
∵A(0,7),B(6,1),∴A′(0,-7),A′C=6,BC=8。
∴。
潇桥过客
2013-05-26 · TA获得超过1.4万个赞
知道大有可为答主
回答量:2562
采纳率:90%
帮助的人:1219万
展开全部

(1)若P(p,0)是x轴上的一个动点,则当p=(3.5 )时,△PAB的周长最短;

(2)若C(a,0),D(a+1,0)是x轴上的两个动点,则当a=(2.5)时,四边形ABDC的周长最短;

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
向图灵致敬
2013-05-26
知道答主
回答量:94
采纳率:0%
帮助的人:32.9万
展开全部
做A点对称点A'(x轴为对称),连A' B即得

将A'向右移一个单位长度,记为A'',连A'' B得D点,即可得C点,相连即得

大哥,这不是填空题吗?
上面的就是过程
如果真写过程,就把两点带进去,求函数解析式,再求与x轴交点坐标
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式