(2010?安徽)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是______
(2010?安徽)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是______.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB...
(2010?安徽)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是______.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB-BD=AC-CD.
展开
展开全部
应添加的条件是②③④;
证明:②当∠BAD=∠CAD时,
∵AD是∠BAC的平分线,且AD是BC边上的高;
则△ABD≌△ACD,
∴△BAC是等腰三角形;
③延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF;
∵AB+BD=CD+AC,
∴DE=DF,又AD⊥BC;
∴△AEF是等腰三角形;
∴∠E=∠F;
∵AB=BE,
∴∠ABC=2∠E;
同理,得∠ACB=2∠F;
∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形;
④△ABC中,AD⊥BC,根据勾股定理,得:
AB2-BD2=AC2-CD2,
即(AB+BD)(AB-BD)=(AC+CD)(AC-CD);
∵AB-BD=AC-CD①,
∴AB+BD=AC+CD②;
∴①+②得:,
2AB=2AC;
∴AB=AC,
∴△ABC是等腰三角形
故填②③④.
证明:②当∠BAD=∠CAD时,
∵AD是∠BAC的平分线,且AD是BC边上的高;
则△ABD≌△ACD,
∴△BAC是等腰三角形;
③延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF;
∵AB+BD=CD+AC,
∴DE=DF,又AD⊥BC;
∴△AEF是等腰三角形;
∴∠E=∠F;
∵AB=BE,
∴∠ABC=2∠E;
同理,得∠ACB=2∠F;
∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形;
④△ABC中,AD⊥BC,根据勾股定理,得:
AB2-BD2=AC2-CD2,
即(AB+BD)(AB-BD)=(AC+CD)(AC-CD);
∵AB-BD=AC-CD①,
∴AB+BD=AC+CD②;
∴①+②得:,
2AB=2AC;
∴AB=AC,
∴△ABC是等腰三角形
故填②③④.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询