设数列{an}的前n项和为Sn,对任意的n∈N*,都有an>0,并且有Sn=a13+a23+a33+…+an3(1)求a2,a3的值;
设数列{an}的前n项和为Sn,对任意的n∈N*,都有an>0,并且有Sn=a13+a23+a33+…+an3(1)求a2,a3的值;(2)求数列{an}的通项公式an;...
设数列{an}的前n项和为Sn,对任意的n∈N*,都有an>0,并且有Sn=a13+a23+a33+…+an3(1)求a2,a3的值;(2)求数列{an}的通项公式an;(3)设数列{bn},其中 bn=1an2,设数列{bn}的前n项和为Tn,求证:Tn<74.
展开
1个回答
展开全部
解答:(1)解:在Sn=
中,
当n=1时,a1=S1=
,即a12=a13,
∵a1>0,∴a1=1,
当n=2时,(a1+a2)2=a12+a23,即1+2a2+a22=1+a23,
解得:a2=-1或a2=2.
∵a2>0,∴a2=2;
当n=3时,(a1+a2+a3)2=a13+a23+a33,
即(3+a3)2=9+a33,解得:a3=3;
(2)解:由Sn=
,得
a13+a23+a33+…+an3=Sn2 ①,
当n≥2时,a13+a23+a33+…+an-13=Sn-12 ②,
①-②得,an3=Sn2-Sn-12=(Sn-Sn-1)(Sn+Sn-1),
∵an>0,∴an2=Sn+Sn-1=2Sn-an ③,
∵a1=1适合上式.
当n≥2时,an-12=2Sn-1-an-1 ④,
③-④得:an2-an-12=2(Sn-Sn-1)-an+an-1=2an-an+an-1=an+an-1
∵an+an-1>0,∴an-an-1=1.
∴数列{an}是等差数列,首项为1,公差为1,可得an=n;
(3)证明:bn=
=
,
则Tn=
+
+…+
<1+
+
+
+…+
=1+
+
?
+
?
+…+
?
=
?
<
.
a13+a23+a33+…+an3 |
当n=1时,a1=S1=
a13 |
∵a1>0,∴a1=1,
当n=2时,(a1+a2)2=a12+a23,即1+2a2+a22=1+a23,
解得:a2=-1或a2=2.
∵a2>0,∴a2=2;
当n=3时,(a1+a2+a3)2=a13+a23+a33,
即(3+a3)2=9+a33,解得:a3=3;
(2)解:由Sn=
a13+a23+a33+…+an3 |
a13+a23+a33+…+an3=Sn2 ①,
当n≥2时,a13+a23+a33+…+an-13=Sn-12 ②,
①-②得,an3=Sn2-Sn-12=(Sn-Sn-1)(Sn+Sn-1),
∵an>0,∴an2=Sn+Sn-1=2Sn-an ③,
∵a1=1适合上式.
当n≥2时,an-12=2Sn-1-an-1 ④,
③-④得:an2-an-12=2(Sn-Sn-1)-an+an-1=2an-an+an-1=an+an-1
∵an+an-1>0,∴an-an-1=1.
∴数列{an}是等差数列,首项为1,公差为1,可得an=n;
(3)证明:bn=
1 |
an2 |
1 |
n2 |
则Tn=
1 |
12 |
1 |
22 |
1 |
n2 |
1 |
4 |
1 |
2×3 |
1 |
3×4 |
1 |
(n?1)n |
=1+
1 |
2 |
1 |
3 |
1 |
4 |
1 |
4 |
1 |
5 |
1 |
n?1 |
1 |
n |
7 |
4 |
1 |
n |
7 |
4 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询