
已知a>0,b>0,c>0,abc=1,试证明:1/a2(b+c)+1/b2(a+c)+1/c2(a+b)≥3/2
已知a>0,b>0,c>0,abc=1,试证明:1/a2(b+c)+1/b2(a+c)+1/c2(a+b)≥3/2详细点...
已知a>0,b>0,c>0,abc=1,试证明:1/a2(b+c)+1/b2(a+c)+1/c2(a+b)≥3/2
详细点 展开
详细点 展开
1个回答
展开全部
令x=ab,y=ac,z=bc,则xyz=1
不妨设x≥y≥z,则x+y≥x+z≥y+z
∴1/(y+z)≥1/(x+z)≥1/(x+y)
由顺序和≥乱序和,得
x/(y+z)+y/(x+z)+z/(x+y)≥y/(y+z)+z/(x+z)+x/(x+y)
x/(y+z)+y/(x+z)+z/(x+y)≥z/(y+z)+x/(x+z)+y/(x+y)
上面两式相加得x/(y+z)+y/(x+z)+z/(x+y)≥3/2
而x/(y+z)=ab/(ac+bc)=1/c²(a+b)
y/(x+z)=ac/(ab+bc)=1/b²(a+c)
z/(y+x)=bc/(ac+ab)=1/a²(c+b)
即1/a²(c+b)+1/b²(a+c)+1/c²(a+b)≥3/2
不妨设x≥y≥z,则x+y≥x+z≥y+z
∴1/(y+z)≥1/(x+z)≥1/(x+y)
由顺序和≥乱序和,得
x/(y+z)+y/(x+z)+z/(x+y)≥y/(y+z)+z/(x+z)+x/(x+y)
x/(y+z)+y/(x+z)+z/(x+y)≥z/(y+z)+x/(x+z)+y/(x+y)
上面两式相加得x/(y+z)+y/(x+z)+z/(x+y)≥3/2
而x/(y+z)=ab/(ac+bc)=1/c²(a+b)
y/(x+z)=ac/(ab+bc)=1/b²(a+c)
z/(y+x)=bc/(ac+ab)=1/a²(c+b)
即1/a²(c+b)+1/b²(a+c)+1/c²(a+b)≥3/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询