谁知道“简单的线性规划问题”的求解过程?

 我来答
匿名用户
2013-05-26
展开全部
(一)线性规划单纯形解法的基本思路

若一个凸集仅包含有限个极点,则称此凸集为单纯形。
线性规划的可行域是单纯形(证明略,但可以从上节图解法的例子得到认同),进而线性规划的基可行解又与线性规划问题可行域的极点1-1对应(定理2.2.2), 线性规划单纯形法就是基于线性规划可行域的这样的几何特征设计产生的。这个方法最初是在20世纪40年代由George Dantzig研究出来的。这个线性规划单纯形解法的基本思路是:先求得一个初始基可行解,以这个初始基可行解在可行域中对应的极点为出发点,根据最优准则判断这个基可行解是否是最优解,如果不是转换到相邻的一个极点,即得到一个新的基可行解,并使目标函数值下降,这样重复进行有限次后,可找到最解或判断问题无最优解。

(二)单纯形法的最优准则

设:线性规划(LP)为:

min cx
s.t. Ax=b
x≥0

A为(LP)的约束方程组的m*n阶系数矩阵(设n≥m),A的秩为m;B是线性规划的一个基,不失普遍性,记

定义

则:称λ,或者λj,(j=1,2,…,n)为检验数。

若:λ≤0,即全部λi非正,
则:由B确定的基可行解是(LP)的最优解。
(参看附录2.3.1)

二、线性规划单纯形法的表格解法

较简单的线性规划可以采用单纯形法的表格形式,这样利用计算器就可求解。单纯形法的表格解法的基本思路是,对基可行解建立单纯形表,依据此表作最优解判断,以及从原基可行解向目标值更小的新可行解转换的计算。

对于由基阵B确定的基可行解,其单纯形表为表2.3.1形式。对于初始基可行解,其单纯形表的构建方法为:先建立表2.3.2形式的表格,然后应用“行变换”将表2.3.2中的前m列,即基变量对应的列

转换为

其中0是m元0向量:0=(0,0,…,0), 是m阶单位方阵。在这样的行变换下,表2.3.2将转换为表2.3.1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式