如图,在四边形ABCD中,∠ABC=∠ADC=90°,对角线AC与BD相交于点O,M、N分别是边AC、BD的中点.(1)求证

如图,在四边形ABCD中,∠ABC=∠ADC=90°,对角线AC与BD相交于点O,M、N分别是边AC、BD的中点.(1)求证:MN⊥BD;(2)当∠BCA=15°,AC=... 如图,在四边形ABCD中,∠ABC=∠ADC=90°,对角线AC与BD相交于点O,M、N分别是边AC、BD的中点.(1)求证:MN⊥BD;(2)当∠BCA=15°,AC=10cm,OB=OM时,求MN的长. 展开
 我来答
劳资_q82
2014-11-30 · 超过59用户采纳过TA的回答
知道答主
回答量:108
采纳率:100%
帮助的人:109万
展开全部
解答:(1)证明:连接BM、DM.
∵∠ABC=∠ADC=90°,点M、点N分别是边AC、想BD的中点,
BM=DM=
1
2
AC

∵N是BD的中点,
∴MN是BD的垂直平分线,
∴MN⊥BD.

(2)解:∵∠BCA=15°,BM=CM=
1
2
AC

∴∠BCA=∠CBM=15°,
∴∠BMA=30°,
∵OB=OM,
∴∠OBM=∠BMA=30°,
∵AC=10,BM=
1
2
AC

∴BM=5,
在Rt△BMN中,∠BNM=90°,∠NBM=30°,
MN=
1
2
BM=2.5

答:MN的长是2.5.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式