高考数学:已知数列{an}满足a1=6,an-1.an-6an-1+9=0,n∈N*且n≥2,1.求证:数列{1/an-3}为等差 10
等差数列
(1)等差数列的通项公式是:a1+(n-1)d
(2)任意两项,的关系为
(3)从等差数列的定义、通项公式、前n项和公式可以推出:,k∈{1,2,…,n}
(4)若m,n,p,q∈N*,且m+n=p+q,则有a(m)+a(n)=a(p)+a(q)
(5)若m,n,p∈N*,且m+n=2p,则有a(m)+a(n)=2a(p)
(6)若m,n,p∈N*,有(am+an)/2=ap,则ap为am与an的等差中项
(1)等比数列的通项公式是:
若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
(2) 任意两项am,an的关系为
am,an的关系为
(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
性质:
①若m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;
②在等比数列中,依次每 k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
(5) 等比数列前n项之和Sn=a1(1-q^n)/(1-q)或Sn=(a1-an*q)/(1-q)(q≠1) Sn=n*a1 (q=1)
在等比数列中,首项a1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。
等比数列在生活中也是常常运用的。
如:银行有一种支付利息的方式---复利。
即把前一期的利息和本金加在一起算作本金,
再计算下一期的利息,也就是人们通常说的利滚利。
按照复利计算本利和的公式:本利和=本金*(1+利率)^存期