1个回答
展开全部
z=[x+y+(y-1)arcsin(x/y)^(1/3)
∂z/∂x=1+ (y-1)(1/3)arcsin(x/y)^(-2/3)√(1-(x/y)^(2/3))(1/y)
=1+(1/3)(1-1/y)arcsin(x/y)^(-2/3)√(1-(x/y)^(2/3))
∂z/∂y=arcsin(x/y)^(1/3)+(y-1)(1/3)arcsin(x/y)^(-2/3)√(1-(x/y)^(2/3))(-x/y^2)
=arcsin(x/y)^(1/3)+(-x/(3y^2))(y-1)arcsin(x/y)^(-2/3)√(1-(x/y)^(2/3))
∂z/∂x=1+ (y-1)(1/3)arcsin(x/y)^(-2/3)√(1-(x/y)^(2/3))(1/y)
=1+(1/3)(1-1/y)arcsin(x/y)^(-2/3)√(1-(x/y)^(2/3))
∂z/∂y=arcsin(x/y)^(1/3)+(y-1)(1/3)arcsin(x/y)^(-2/3)√(1-(x/y)^(2/3))(-x/y^2)
=arcsin(x/y)^(1/3)+(-x/(3y^2))(y-1)arcsin(x/y)^(-2/3)√(1-(x/y)^(2/3))
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |