设数列{an}满足a1+3a2+(32)a3+…+[3(n-1)]an=n/3(n属于正整数).求数列{an}的通项.

题中是3的2次方,3的n-1次方... 题中是3的2次方,3的n-1次方 展开
匿名用户
2013-05-31
展开全部
a1+3a2+3^2a3+....3^(n-1)an=n/3吧n=1时,a1=1/3n>1时,a1+3a2+...+3^(n-2)a(n-1)+3^(n-1)an=n/3① a1+3a2+...+3^(n-2)a(n-1)=(n-1)/3②①-②得3^(n-1)an=n/3-(n-1)/3=1/3, ∴an=1/3×(1/3)^(n-1)=(1/3)^n,n=1时也符合∴an通项为an=(1/3)^n=1/3^n∴bn=n/an=n×3^nSn=1×3^1+2×3^2+3×3^3+...+(n-1)×3^(n-1)+n×3^n③3Sn=1×3^2+2×3^3+3×3^4+...+(n-1)×3^n+n×3^(n+1)④④-③得2Sn=-1×3^1+(1-2)×3^2+(2-3)×3^3+...+[(n-1)-n]×3^m+n×3^(n+1) =-3^1-3^2+3^3-...-3^n+n×3^(n+1)=-[3+3^2+3^3+...+3^n]+n×3^(n+1) =-3×(3^n-1)/(3-1)+n×3^(n-1)=-[3^(n+1)-3]/2+n×3^(n+1) =[-3^(n+1)+3+2n×3^(n+1)]/2=[(2n-1)×3^(n+1)+3]/2∴Sn=[(2n-1)×3^(n+1)+3]/4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式