如图 在平面直角坐标系中,已知抛物线y=ax^2+bx-4经过A(-2,0)、B(4,0)交y轴于点C
如图在平面直角坐标系中,已知抛物线y=ax^2+bx-4经过A(-2,0)、B(4,0)交y轴于点C。(1)求抛物线的解析式(2)若点M为第四象限内抛物线上的一动点,点M...
如图 在平面直角坐标系中,已知抛物线y=ax^2+bx-4经过A(-2,0)、B(4,0)交y轴于点C。(1)求抛物线的解析式
(2)若点M为第四象限内抛物线上的一动点,点M的横坐标为m,四边形OCMB的面积为S,求S关于m的函数关系式,求出S的最大值
(3)若点P是抛物线上的动点,点Q是直线y=x上的动点,判断有几个位置能使以点P、Q、C、O为顶点的四边形为直角梯形?直接写出相应的点P的坐标 展开
(2)若点M为第四象限内抛物线上的一动点,点M的横坐标为m,四边形OCMB的面积为S,求S关于m的函数关系式,求出S的最大值
(3)若点P是抛物线上的动点,点Q是直线y=x上的动点,判断有几个位置能使以点P、Q、C、O为顶点的四边形为直角梯形?直接写出相应的点P的坐标 展开
6个回答
展开全部
数理答疑团为您解答,希望对你有所帮助。
如图 在平面直角坐标系中,已知抛物线y=ax^2+bx-4经过A(-2,0)、B(4,0)交闹银y轴于点C。
(1)求抛物线的解析式拿亮
抛物线y=ax^2+bx-4经过A(-2,0)、B(4,0)有:
0=a(-2)^2-2b-4
0=a4^2+4b-4
解得:a=1/2,b= -1
故:抛物线的解析式y=x²/2 - x-4, 2y=x²-2x-8
(2)若点M为第四象限内抛物线上的一动点,点M的横坐标为m,四边形OCMB的面积为S,求S关于m的函数关系式,求出S的最大值
可知:C(0,-4),令M(m,y),y=m²/2 - m-4
S=S△OBM + S△OCM = -4y/2 +4m/2 =2m-2y=2m-(m²-2m-8)= -m²+4m+8
故:S关于m的函数关系式S= -m²+4m+8 ,m∈(0,4)
S= -m²+4m+8 =12-(m-2)²,m=2时S的液敏宴最大值12
(3)若点P是抛物线上的动点,点Q是直线y=x上的动点,判断有几个位置能使以点P、Q、C、O为顶点的四边形为直角梯形?直接写出相应的点P的坐标
1、OQ∥CP时,过C作CP∥直线y=x,交抛物线于P,过P作PQ⊥直线y=x,交直线于Q;
P(4,0)
2、OC∥PQ时,过C作CP⊥y轴,交抛物线于P,过P作PQ∥y轴,交直线于Q; P(2,-4)
3、OC∥PQ时,过O作OP⊥y轴,交抛物线于P,过P作PQ∥y轴,交直线于Q; P(-2,0)
4、OC∥PQ时,过C作CQ⊥y轴,交直线于Q,过Q作PQ∥y轴,交抛物线于P; P(-4,8)
5、OP∥CQ时,过O作OP⊥y轴,交抛物线于P,过C作CQ∥x轴,交直线于Q; P(-2,0)
6、OP∥QC时,过O作OP⊥直线y=x,交抛物线于P(第四象限),过C作CQ⊥直线y=x,交直线于Q; P(2√2,-2√2)
祝你学习进步,更上一层楼! (*^__^*)
如图 在平面直角坐标系中,已知抛物线y=ax^2+bx-4经过A(-2,0)、B(4,0)交闹银y轴于点C。
(1)求抛物线的解析式拿亮
抛物线y=ax^2+bx-4经过A(-2,0)、B(4,0)有:
0=a(-2)^2-2b-4
0=a4^2+4b-4
解得:a=1/2,b= -1
故:抛物线的解析式y=x²/2 - x-4, 2y=x²-2x-8
(2)若点M为第四象限内抛物线上的一动点,点M的横坐标为m,四边形OCMB的面积为S,求S关于m的函数关系式,求出S的最大值
可知:C(0,-4),令M(m,y),y=m²/2 - m-4
S=S△OBM + S△OCM = -4y/2 +4m/2 =2m-2y=2m-(m²-2m-8)= -m²+4m+8
故:S关于m的函数关系式S= -m²+4m+8 ,m∈(0,4)
S= -m²+4m+8 =12-(m-2)²,m=2时S的液敏宴最大值12
(3)若点P是抛物线上的动点,点Q是直线y=x上的动点,判断有几个位置能使以点P、Q、C、O为顶点的四边形为直角梯形?直接写出相应的点P的坐标
1、OQ∥CP时,过C作CP∥直线y=x,交抛物线于P,过P作PQ⊥直线y=x,交直线于Q;
P(4,0)
2、OC∥PQ时,过C作CP⊥y轴,交抛物线于P,过P作PQ∥y轴,交直线于Q; P(2,-4)
3、OC∥PQ时,过O作OP⊥y轴,交抛物线于P,过P作PQ∥y轴,交直线于Q; P(-2,0)
4、OC∥PQ时,过C作CQ⊥y轴,交直线于Q,过Q作PQ∥y轴,交抛物线于P; P(-4,8)
5、OP∥CQ时,过O作OP⊥y轴,交抛物线于P,过C作CQ∥x轴,交直线于Q; P(-2,0)
6、OP∥QC时,过O作OP⊥直线y=x,交抛物线于P(第四象限),过C作CQ⊥直线y=x,交直线于Q; P(2√2,-2√2)
祝你学习进步,更上一层楼! (*^__^*)
展开全部
(1)
与x轴交于(-2, 0), (4 ,0),可表达为y = a(x + 2)(x - 4),其常数项为-8a = -4, a = 1/2
抛物线的解友吵析式: y = x²/2 - x - 4
(2)
C(0, -4), M(m, m²/2 - m - 4), m²/2 - m - 4 < 0
从M向x轴作垂线,垂足N(m, 0)
四边形OCMB的租告饥弊返面积为S = 梯形OCMN的面积 + 三角形MNB的面积
= (1/2)(OC + MN)*ON + (1/2)NB*MN
= (1/2)(4 - m²/2 + m + 4)*m + (1/2)(4 - m)*(-m²/2 + m + 4)
= -m² + 4m + 8
= -(m - 2)² + 12
最大值12
(3)
(i)
过C的y = x (斜率1)的平行线为y = x - 4; 与y = x²/2 - x - 4联立, 交点为P(4, 0)
从P向y = x作垂线,垂足Q
垂线(斜率-1): y = -(x - 4) = 4 - x
与y =x 联立, 交点为Q(2, 2)
(ii)
Q(-4, -4)
P(-4, 8)
(iii)
P(2, -4)
Q(2, 2)
与x轴交于(-2, 0), (4 ,0),可表达为y = a(x + 2)(x - 4),其常数项为-8a = -4, a = 1/2
抛物线的解友吵析式: y = x²/2 - x - 4
(2)
C(0, -4), M(m, m²/2 - m - 4), m²/2 - m - 4 < 0
从M向x轴作垂线,垂足N(m, 0)
四边形OCMB的租告饥弊返面积为S = 梯形OCMN的面积 + 三角形MNB的面积
= (1/2)(OC + MN)*ON + (1/2)NB*MN
= (1/2)(4 - m²/2 + m + 4)*m + (1/2)(4 - m)*(-m²/2 + m + 4)
= -m² + 4m + 8
= -(m - 2)² + 12
最大值12
(3)
(i)
过C的y = x (斜率1)的平行线为y = x - 4; 与y = x²/2 - x - 4联立, 交点为P(4, 0)
从P向y = x作垂线,垂足Q
垂线(斜率-1): y = -(x - 4) = 4 - x
与y =x 联立, 交点为Q(2, 2)
(ii)
Q(-4, -4)
P(-4, 8)
(iii)
P(2, -4)
Q(2, 2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
手机党看不到图,要不一定帮你
追问
现在有图了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询