在四边形ABCD中,AD平行于BC,∠BAC=∠D,点E,F分别在BC,CD上,且∠AEF=∠ACD,试探究AE与EF之间的关系

wangku2013
高粉答主

2013-05-30 · 关注我不会让你失望
知道大有可为答主
回答量:9665
采纳率:86%
帮助的人:2325万
展开全部
解析:(1)AE=EF

(2)猜想:(1)中的结论是没有发生变化
证明:如图:过点E作EH‖AB交AC于点H,则∠BAC+∠1=1800,∠BAC=∠2.
∵AB=BC ∴∠BAC=∠3 ∴∠2=∠3 ∴EH=EC
∵AD‖BC ∴∠D+∠DCB=1800.
∵∠BAC=∠D ∴∠1=∠DCB=∠ECF
∵∠4=∠5, ∠AEF=∠ACF ∴∠6=∠7
∴△AEH≌△FEC ∴AE=EF

(3)猜想:(1)中的结论发生变化
证明:由(2)可得∠6=∠7
∠1=∠DCB=∠ECF
∴△AEH∽△FEC
∴ AE/EF=EH/EC
∵EH‖AB
∴△ABC∽△HEC
∴EH/Ec=AB/BC=k
∴AE/EF=k
追问
有图么,角1234是什么
追答
(不用角1234了)

解:(1)AE=EF;
证明:如图:过点E作EH‖AB交AC于点H.
则∠BAC+∠AHE=180°,∠BAC=∠CHE,
∵AB=BC=AC,∴∠BAC=∠ACB=60°,
∴∠CHE=∠ACB=∠B=60°,
∴EH=EC.
∵AD‖BC,∴∠FCE=180°-∠B=120°,
又∠AHE=180°-∠BAC=120°,
∴∠AHE=∠FCE,
∵∠AOE=∠COF,∠AEF=∠ACF,∴∠EAC=∠EFC,
∴△AEH≌△FEC,
∴AE=EF;

(2)猜想:(1)中的结论是没有发生变化.
证明:如图:过点E作EH‖AB交AC于点H,则∠BAC+∠AHE=180°,∠BAC=∠CHE,
∵AB=BC∴∠BAC=∠ACB
∴∠CHE=∠ACB∴EH=EC
∵AD‖BC∴∠D+∠DCB=180°.
∵∠BAC=∠D∴∠AHE=∠DCB=∠ECF
∵∠AOE=∠COF,∠AEF=∠ACF,
∴∠EAC=∠EFC,
∴△AEH≌△FEC,
∴AE=EF;

(3)猜想:(1)中的结论发生变化.
证明:过点E作EH‖AB交AC于点H.
由(2)可得∠EAC=∠EFC,
∠AHE=∠DCB=∠ECF,
∴△AEH∽△FEC,
∴AE:EF=EH:EC,
∵EH‖AB,
∴△ABC∽△HEC,
∴EH:EC=AB:BC=k,
∴AE:EF=k,
∴AE=kEF.
逆飞琉璃蝶
2014-04-16 · TA获得超过307个赞
知道答主
回答量:93
采纳率:0%
帮助的人:31万
展开全部
解:(1)证明:如图1,过点E作EH∥AB交AC于点H.
则∠BAC+∠AHE=180°,∠BAC=∠CHE,
∵AB=BC=AC,
∴∠BAC=∠ACB=60°,
∴∠CHE=∠ACB=∠B=60°,
∴EH=EC.
∵AD∥BC,
∴∠FCE=180°-∠B=120°,
又∵∠AHE=180°-∠BAC=120°,
∴∠AHE=∠FCE,
∵∠AOE=∠COF,∠AEF=∠ACF,
∴∠EAC=∠EFC,
∴△AEH≌△FEC,
∴AE=EF;
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式