在平面直角坐标系中 边长为2的正方形OABC的两顶点A,C分别在y轴,X轴的正半轴上,点O在原点,现将正方形OA
在平面直角坐标系中边长为2的正方形OABC的两顶点A,C分别在y轴,X轴的正半轴上,点O在原点,现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转...
在平面直角坐标系中 边长为2的正方形OABC的两顶点A,C分别在y轴,X轴的正半轴上,点O在原点,现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x点M。BC边交x轴于点N。
(1)求边长OA在旋转过程中所扫过的面积。(过程)
(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数。(过程)
(3)设△MBN的周长为P,在旋转正方形OABC的过程中,P值是否有变化?说明理由。 展开
(1)求边长OA在旋转过程中所扫过的面积。(过程)
(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数。(过程)
(3)设△MBN的周长为P,在旋转正方形OABC的过程中,P值是否有变化?说明理由。 展开
1个回答
展开全部
:(1)∵A点第一次落在直线y=x上时停止旋转,
∴OA旋转了45度.
∴OA在旋转过程中所扫过的面积为45π乘2²除以360=π除以2.(写成分数形式)
(2)∵MN∥AC,
∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45度.
∴∠BMN=∠BNM.∴BM=BN.
又∵BA=BC,∴AM=CN.
又∵OA=OC,∠OAM=∠OCN,
∴△OAM≌△OCN.
∴∠AOM=∠CON.
∴∠AOM=二分之一(90°﹣45°)=22.5度.
∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°﹣22.5°=22.5度.
(3)在旋转正方形OABC的过程中,p值无变化. 证明:延长BA交y轴于E点, 则∠AOE=45°﹣∠AOM,∠CON=90°﹣45°﹣∠AOM=45°﹣∠AOM,
∴∠AOE=∠CON.
又∵OA=OC,∠OAE=180°﹣90°=90°=∠OCN.
∴△OAE≌△OCN.
∴OE=ON,AE=CN.
又∵∠MOE=∠MON=45°,OM=OM,
∴△OME≌△OMN.
∴MN=ME=AM+AE.
∴MN=AM+CN,
∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.
∴在旋转正方形OABC的过程中,p值无变化.
∴OA旋转了45度.
∴OA在旋转过程中所扫过的面积为45π乘2²除以360=π除以2.(写成分数形式)
(2)∵MN∥AC,
∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45度.
∴∠BMN=∠BNM.∴BM=BN.
又∵BA=BC,∴AM=CN.
又∵OA=OC,∠OAM=∠OCN,
∴△OAM≌△OCN.
∴∠AOM=∠CON.
∴∠AOM=二分之一(90°﹣45°)=22.5度.
∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°﹣22.5°=22.5度.
(3)在旋转正方形OABC的过程中,p值无变化. 证明:延长BA交y轴于E点, 则∠AOE=45°﹣∠AOM,∠CON=90°﹣45°﹣∠AOM=45°﹣∠AOM,
∴∠AOE=∠CON.
又∵OA=OC,∠OAE=180°﹣90°=90°=∠OCN.
∴△OAE≌△OCN.
∴OE=ON,AE=CN.
又∵∠MOE=∠MON=45°,OM=OM,
∴△OME≌△OMN.
∴MN=ME=AM+AE.
∴MN=AM+CN,
∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.
∴在旋转正方形OABC的过程中,p值无变化.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询