已知平面向量a,b,c满足a+b+c=0,且向量a与向量b的夹角余弦值为1/5,向量b与向量c的夹角余弦值为-1/3,

|b|=1,求向量a*向量c的值... |b|=1,求向量a*向量c的值 展开
hbtmxwg
2013-06-04 · TA获得超过181个赞
知道小有建树答主
回答量:359
采纳率:0%
帮助的人:335万
展开全部
如果是数量积则:a*b=|a|.|b|cos(a,b)=|a|.|b|.(1/5)
b*c=|b|.|c|cos(b,c)=|b|.|c|.(-1/3)
a*c=|a|.|c|cos(a,c)
由a+b+c=0可知,向量a、b、c构成了首尾相连的三角形,说白了就是解三角形
令向量a、b、c分别对应三角形的三条边A,B,C,对应的角也是角A角B角C
则cos角C=1/5 cos角A=-1/3,则由:角A+角B+角C=180度可以求出cos角B,
cos角B求出来了,又因为三角形的B边长=1,所以结合角度就可以求出
边A边C,这样a*c=|a|.|c|cos角B 就解出来了
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式