
在四边形ABCD中,AC=BD=6,E,F,G,H分别是AB,BC,CD,DA的中点,求EG2+FH2的值.
2个回答
展开全部
解:连接EF,FG,GH,HE
又 E.F,G,H分别是AB,BC,CD,DA的中点
从而 EF=FG=GH=HE=3
则 EFGH是棱形
∴EG⊥HF
由勾股定理,得 EF²=(1/2EG)^²+(1/2HF)^²
3^2=1/4*(EG^2+FH^2)
∴EG^2+FH^2=9*4=36
又 E.F,G,H分别是AB,BC,CD,DA的中点
从而 EF=FG=GH=HE=3
则 EFGH是棱形
∴EG⊥HF
由勾股定理,得 EF²=(1/2EG)^²+(1/2HF)^²
3^2=1/4*(EG^2+FH^2)
∴EG^2+FH^2=9*4=36
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询