1、定义
二项分布是重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。
正态分布,也称“常态分布”,又名高斯分布,若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
2、图像特点
二项分布:当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值;当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。
正态分布:正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形;集中性:正态曲线的高峰位于正中央,即均数所在的位置。对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
二项分布:
正态分布:
3、性质
二项分布:是离散型分布,概率直方图是跃阶式的。果二项分布满足p<q,np≥5,(或p>q,np≥5)时,二项分布接近正态分布。
正态分布:正态分布具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ2),σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。
扩展资料:
一般正态分布与标准正态分布的区别与联系
正态分布随随机变量的平均数、标准差的大小与单位不同而有不同的分布形态。标准正态分布是正态分布的一种,其平均数和标准差都是固定的,平均数为0,标准差为1。
二项分布的应用条件
1、各观察单位只能具有相互对立的一种结果,如阳性或阴性,生存或死亡等,属于两分类资料。
2、已知发生某一结果(阳性)的概率为π,其对立结果的概率为1-π,实际工作中要求π是从大量观察中获得比较稳定的数值。
3、n次试验在相同条件下进行,且各个观察单位的观察结果相互独立。
参考资料来源:百度百科-正态分布
从两者的不同点进行区分,二项分布和正态分布有3点不同:
一、两者的图像特点不同:
1、二项分布的图像特点:当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值;当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。
2、正态分布的图像特点:关于μ对称,并在μ处取最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点,形状呈现中间高两边低,正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。
二、两者的性质不同:
1、二项分布的性质:当p≠q时,直方图呈偏态,p<q与p>q的偏斜方向相反。如果n很大,即使p≠q,偏态逐渐降低,最终成正态分布,二项分布的极限分布为正态分布。
故当n很大时,二项分布的概率可用正态分布的概率作为近似值。一般规定:当p<q且np≥5,或p>q且nq≥5,这时的n就被认为很大,可以用正态分布的概率作为近似值了。
2、正态分布的性质:由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。
三、两者的提出者不同:
1、二项分布的提出者:二项分布是由伯努利提出的概念。
2、正态分布的提出者:C.F.高斯在研究测量误差时从另一个角度导出了正态分布。
参考资料来源:百度百科-二项分布
参考资料来源:百度百科-正态分布
广告 您可能关注的内容 |