已知四边形ABCD为正方形,PD⊥平面ABCD,PD=DC,E为PC中点,

求(1)DE⊥平面PBC,求(2)BD与平面PBC所成的角... 求(1)DE⊥平面PBC,求(2)BD与平面PBC所成的角 展开
数学新绿洲
2013-06-03 · 初中高中数学解题研习
数学新绿洲
采纳数:13056 获赞数:76576

向TA提问 私信TA
展开全部
(1)证明:因为PD⊥平面ABCD,所以:
PD⊥CD,PD⊥BC
因为四边形ABCD是正方形,所以:BC⊥CD
这就是说BC垂直于平面PCD内的两条相交直线PD和CD
所以:BC⊥平面PCD
因为DE在平面PCD内,所以:BC⊥DE
又PD=DC,点E为PC中点,
则在Rt△PCD中有:DE⊥PC
而PC和BC是平面PBC内的两条相交直线
所以:DE⊥平面PBC
(2)解:由(1)知:DE⊥平面PBC
那么:BD在平面PBC内的射影为BE
则可知∠DBE就是BD与平面PBC所成的角
令PD=DC=a,那么在Rt△PCD中由勾股定理有:
PC=根号2*a,DE=PC/2=根号2*a/2
而在正方形ABCD中,易知对角线BD=根号2*a
所以在Rt△BDE中,sin∠DBE=DE/BD=(根号2*a/2)÷(根号2*a)=1/2
解得:∠DBE=30°
所以BD与平面PBC所成的角为30° 。
wgq射手
2013-06-03 · TA获得超过813个赞
知道小有建树答主
回答量:516
采纳率:0%
帮助的人:339万
展开全部
(1).四边形ABCD为正方形,PD⊥平面ABCD
DC⊥BC,PD⊥BC
所以BC⊥平面PCD
所以BC⊥DE
PD=DC,E为PC中点,
所以DE⊥PC
又DE⊥BC
所以DE⊥平面PBC
(2).BD与平面PBC所成的角即∠EBD
设DC=a,BD=√2a,过E作EF⊥DC于F,
CF=a/2,BF=√5a/2,EF=1/2PD=a/2,
BE=√(EF^2+BF^2)=√6a/2,
DE=√2a/2
cos∠EBD=(BE^2+BD^2-DE^2)/2BE*BD=√3/2
∠EBD=30°,
BD与平面PBC所成的角为30°
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
花溪天蝎
2013-06-03
知道答主
回答量:16
采纳率:0%
帮助的人:2.3万
展开全部
I don't know、
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式