曲面积分∫∫xdydz+y^2dzdy+zdxdy,Σ为平面上x+y+z=1被坐标平面所截的三角形的上侧;求曲面积分

2... 2 展开
lI50lI
2013-06-05 · TA获得超过9297个赞
知道大有可为答主
回答量:3193
采纳率:23%
帮助的人:1383万
展开全部
求曲面积分∫∫ xdydz + y^2dzdx + zdxdy,其中Σ为平面上x + y + z = 1被坐标平面所截的三角形的上侧。
补面:
Σ1:x = 0,后侧
Σ2:y = 0,左侧
Σ3:z = 0,下侧
∫∫(Σ+Σ1+Σ2+Σ3) xdydz + y^2dzdy + zdxdy
= ∫∫∫Ω (1 + 2y + 1) dV
= 2∫∫∫Ω (1 + y) dV
= 2∫(0→1) dx ∫(0→1 - x) dy ∫(0→1 - x - y) (1 + y) dz
= 5/12
∫∫Σ1 xdydz + y^2dzdy + zdxdy = 0
∫∫Σ2 xdydz + y^2dzdy + zdxdy = 0
∫∫Σ3 xdydz + y^2dzdy + zdxdy = 0
于是∫∫Σ xdydz + y^2dzdy + zdxdy = 5/12

用原本方法解出:(技巧性的做法,这样才能看出你对曲面积分有多么的了解)
求曲面积分∫∫ xdydz + y^2dzdx + zdxdy,其中Σ为平面上x + y + z = 1被坐标平面所截的三角形的上侧。
∫∫Σ xdydz + y^2dzdx + zdxdy = ∫∫Σ x dydz + ∫∫Σ y^2 dzdx + ∫∫Σ z dxdy
在yz面、∫∫Σ x dydz、x = 1 - y - z、取前侧
= ∫∫D (1 - y - z) dydz、y + z = 1与yz坐标面围成的面积
= ∫(0→1) dy ∫(0→1 - y) (1 - y - z) dz
= 1/6
在zx面、∫∫Σ y^2 dzdx、y = 1 - z - x、取右侧
= ∫∫D (1 - z - x)^2 dzdx
= ∫∫D (z^2 + x^2 + 2zx - 2z - 2x + 1) dzdx
= ∫(0→1) dx ∫(0→1 - x) (z^2 + x^2 + 2zx - 2z - 2x + 1) dz
= 1/12
在xy面、∫∫ z dxdy、z = 1 - x - y、取上侧
= ∫∫D (1 - x - y) dxdy
= ∫(0→1) dx ∫(0→1 - x) (1 - x - y) dy
= 1/6
于是∫∫Σ xdydz + y^2dzdx + zdxdy = 1/6 + 1/12 + 1/6 = 5/12
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式