求函数偏导:z=arctan(x-y)^z
1个回答
展开全部
求函数偏导:z=arctan(x-y)^z
解:因为z=arctan(x-y)^z,所以(x-y)^z=tanz;两边取对数得zln(x-y)=ln(tanz)
作函数F(x,y,z)=zln(x-y)-ln(tanz)=0
则∂z/∂x=-(∂F/∂x)/(∂F/∂z)=-[z/(x-y)]/[ln(x-y)-(sec²z)/tanz]=-(ztanz)/{[(tanz)ln(x-y)-sec²z](x-y)};
∂z/∂y=-(∂F/∂Y)/(∂F/∂z)=[z/(x-y)]/[ln(x-y)-(sec²z)/tanz]=(ztanz)/{[(tanz)ln(x-y)-sec²z](x-y)};
解:因为z=arctan(x-y)^z,所以(x-y)^z=tanz;两边取对数得zln(x-y)=ln(tanz)
作函数F(x,y,z)=zln(x-y)-ln(tanz)=0
则∂z/∂x=-(∂F/∂x)/(∂F/∂z)=-[z/(x-y)]/[ln(x-y)-(sec²z)/tanz]=-(ztanz)/{[(tanz)ln(x-y)-sec²z](x-y)};
∂z/∂y=-(∂F/∂Y)/(∂F/∂z)=[z/(x-y)]/[ln(x-y)-(sec²z)/tanz]=(ztanz)/{[(tanz)ln(x-y)-sec²z](x-y)};
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询