∫x/(x+1)(x+2)(x+3) dx 详细过程

 我来答
滚雪球的秘密
高粉答主

2019-05-11 · 醉心答题,欢迎关注
知道大有可为答主
回答量:4152
采纳率:100%
帮助的人:109万
展开全部

∫x/(x+1)(x+2)(x+3)dx=-1/2ln|x+1|+2ln|x+2|-3/2ln|x+3|+C。C为积分常数。

解答过程如下:

把1/(x+1)(x+2)(x+3)写成分数的和差形式:

1/(x+1)(x+2)(x+3)=1/(x+1)[1/(x+2)-1/(x+3)]

=1/[(x+1)(x+2)]-1/[(x+1)(x+3)]

=1/(x+1)-1/(x+2)-1/2[1/(x+1)-1/(x+3)]

=1/[2(x+1)]-1/(x+2)+1/[2(x+3)]

∫x/(x+a)dx=∫[1-a/(x+a)]dx=x-aln|x+a|+C

求不定积分:

∫x/(x+1)(x+2)(x+3)dx

=∫x/[2(x+1)]-x/(x+2)-x/[2(x+3)]dx

=1/2∫x/(x+1)dx-∫x/(x+2)dx+1/2∫x/(x+3)dx

=1/2(x-ln|x+1|)-(x-2ln|x+2|)+1/2(x-3ln|x+3|)+C

=-1/2ln|x+1|+2ln|x+2|-3/2ln|x+3|+C

扩展资料:

分部积分法

不定积分

设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu两边积分,得分部积分公式

∫udv=uv-∫vdu。

称公式为分部积分公式.如果积分∫vdu易于求出,则左端积分式随之得到.轮扒贺

分部积分公式运用成败的关键是恰当地选择u,v

一般来说,u,v 选取的原则是:

1、积分容易者选为v。

2、求导简单者选为u。

例子:∫Inx dx中应设U=Inx,V=x

分部积分法的实质是:将所求积分化为两个积分之差,积分容易者先积分。实际上是两次积分。

有理函数分为整式(即多项式)和分式(即两腊派个多项式的商),分式分为真分式和假分式,而假分式经过多项式除法可以转化成此山一个整式和一个真分式的和.可见问题转化为计算真分式的积分.

可以证明,任何真分式总能分解为部分分式之和。

华瑞RAE一级代理商
2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工... 点击进入详情页
本回答由华瑞RAE一级代理商提供
小小芝麻大大梦
高粉答主

2019-03-26 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:967万
展开全部

∫x/(x+1)(x+2)(x+3)dx=-1/2ln|x+1|+2ln|x+2|-3/2ln|x+3|+C。C为积分常数。

解答过程如下:

把1/(x+1)(x+2)(x+3)写成分数的和差形式:

1/(x+1)(x+2)(x+3)=1/(x+1)[1/(x+2)-1/(x+3)]

=1/[(x+1)(x+2)]-1/[(x+1)(x+3)]

=1/(x+1)-1/(x+2)-1/2[1/(x+1)-1/(x+3)]

=1/[2(x+1)]-1/(x+2)+1/[2(x+3)]

∫x/(x+a)dx=∫[1-a/(x+a)]dx=x-aln|x+a|+C

求不定积分:

∫x/(x+1)(x+2)(x+3)dx

=∫x/[2(x+1)]-x/(x+2)-x/[2(x+3)]dx

=1/2∫x/(x+1)dx-∫x/(x+2)dx+1/2∫x/(x+3)dx

=1/2(x-ln|x+1|)-(x-2ln|x+2|)+1/2(x-3ln|x+3|)+C

=-1/2ln|x+1|+2ln|x+2|-3/2ln|x+3|+C

扩展资料:

分部樱段困积分:

(uv)'=u'v+uv'

得:u'v=(uv)'-uv'

两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx

即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分燃谨公式

也可简写为:∫ v du = uv - ∫ u dv

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)脊念∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
li1lulu
2017-04-01 · TA获得超过4.9万个赞
知道大有可为答主
回答量:1.7万
采纳率:70%
帮助的人:5168万
展开全部

设t=x+2,段裤
原式=∫(t-2)dt/(t³-t)
=∫dt/(t²-1)-2∫dt/(t³-t)
=(1/2)ln[(t-1)/(t+1)]-∫dt²段歼/[t²(t²-1)]
=(1/2)ln[(x+1)/(x+3)]-∫d(t²-1/2)/[(t²-1/2+1/2)(t²-1/2-1/2)]
=(1/2)ln[(x+1)/(x+3)]-ln[(t²-1/2-1/2)/(t²-1/2+1/2)]+C
=[ln(x+1)]/2-[ln(x+3)]/2-ln(x²+4x+3)+2ln(x+2)+C
公式握燃简见下图(21):

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-04-01
展开全部
∫x^3/(1+x^2)dx
=∫凯逗(x^3+x-x)/(1+x^2)dx
=∫(x^3+x)/腊此(1+x^2)dx-∫x/(1+x^2)dx
=∫盯局卖xdx-(1/2)∫2x/(1+x^2)dx
=x^2/2-(1/2)ln(1+x^2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2018-06-07
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式