如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90 AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN的周长最小

我要做法!!!详细的谢谢... 我要做法 !!!
详细的
谢谢
展开
百度网友b20b593
高粉答主

2013-06-09 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:3.3万
采纳率:97%
帮助的人:2.4亿
展开全部
解:作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH,
理由:此时,MB为AA'的的垂直平分线,MA'=MA,同理:NA=NA''则A',M,N,A''在直线A'A''上,此时,△AMN的周长最小,最小周长为A'A''.若在BC,DE上分别另找一点M‘、N‘,则A'M'+M'A''>A'A''

答案你应该看过了
∵∠EAB=120°,
∴∠HAA′=60°,
∴∠AA′M+∠A″=∠HAA′=60°,
∵∠MA′A=∠MAA′,∠NAD=∠A″,
且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,
∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°
如果本题有什么不明白可以追问,如果满意记得采纳
如果有其他问题请另发或点击向我求助,答题不易,请谅解,谢谢。
祝学习进步!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式