已知a,b是单位向量,ab的向量积=0,若向量c满足|c-a-b|=1,则C的取值范围是?
2个回答
展开全部
|c-(a+b)|^2=|c|^2+|a+b|^2-2c·(a+b)
=|c|^2+2-2sqrt(2)|c|cos<c,a+b>=1
即:cos<c,a+b>=(|c|^2+1)/(2sqrt(2)|c|)∈[-1,1]
(|c|^2+1)/(2sqrt(2)|c|)≤1,可得:sqrt(2)-1≤|c|≤sqrt(2)+1
(|c|^2+1)/(2sqrt(2)|c|)≥-1自动满足,不用解
故|c|的最大值:sqrt(2)+1
----------------------------------
当然也可以用数形结合的方法:
在单位圆上任意找2个垂直向量,画出他们的和,即正方形的对角线
以正方形的对角线的终点为圆心再画一个半径为1的圆
则c在此圆上运动,当c与正方形的对角线同向时,|c|最大,为:sqrt(2)+1
=|c|^2+2-2sqrt(2)|c|cos<c,a+b>=1
即:cos<c,a+b>=(|c|^2+1)/(2sqrt(2)|c|)∈[-1,1]
(|c|^2+1)/(2sqrt(2)|c|)≤1,可得:sqrt(2)-1≤|c|≤sqrt(2)+1
(|c|^2+1)/(2sqrt(2)|c|)≥-1自动满足,不用解
故|c|的最大值:sqrt(2)+1
----------------------------------
当然也可以用数形结合的方法:
在单位圆上任意找2个垂直向量,画出他们的和,即正方形的对角线
以正方形的对角线的终点为圆心再画一个半径为1的圆
则c在此圆上运动,当c与正方形的对角线同向时,|c|最大,为:sqrt(2)+1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |