已知f(x)=丨x^+2x丨,若关于x的方程[f(x)]^2+bf(x)+c=0有7个不同的实数解,则b与c的大小关系为......过程

匿名用户
2013-06-11
展开全部
最佳答案检举 令f(x)=t,则 (f(x))^2 + bf(x) + c = t^2 + bt +c

f2(x)+bf(x)+c=0有7个不同的实数解,指的是x有7个不同的答案,
但对于t而言只有2个实数解 t1、t2,不妨设t1>t2

观察函数f(x)=|x^2 + 2x|的图像,
发现要使对于 t1、t2,有不同的7个x与之对应,
那么直线 y=t1 、 y=t2 与 y=f(x)有且仅有7个交点,
考虑到t1>t2,
则有 t1 = 1 (此时直线 y=t1 和 y=f(x)有3个交点)
0<t2<1,(此时直线 y=t21 和 y=f(x)有4个交点)

根据韦达定理,对于方程 t^2 + bt +c = 0
有 t1 + t2 = -b ∴ 0> b >-2
t1 * t2 = c ∴ 1> c >0

由此判定 b > c
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式