设各项均为正数的数列{an}的前n项和为Sn,且满足Sn=[(an+1)\2 ]^2求a1a2a3. 并证明数列{an}为等差数列
1个回答
展开全部
a1 = S1 = [(a1 + 1) \ 2 ]^2,a1为正,a1 = 1;
a1 + a2 = S2 = [(a2 + 1) \ 2 ]^2,a2为正,a2 = 3;
a1 + a2 + a3 = S3 = [(a3 + 1) \ 2 ]^2,a3为正,a2 = 5;
Sn=[(an + 1) \ 2 ]^2
S(n+1)=[(a(n+1) + 1) \ 2 ]^2
两式相减
a(n+1) = S(n+1) - S(n) = [(a(n+1) + 1) \ 2 ]^2 - [(an + 1) \ 2 ]^2
移项,即
[(a(n+1) - 1) \ 2 ]^2 = [(an + 1) \ 2 ]^2
因为an为正项数列,故a(n+1) - 1 = an + 1,即a(n+1) = an + 2
等差数列
a1 + a2 = S2 = [(a2 + 1) \ 2 ]^2,a2为正,a2 = 3;
a1 + a2 + a3 = S3 = [(a3 + 1) \ 2 ]^2,a3为正,a2 = 5;
Sn=[(an + 1) \ 2 ]^2
S(n+1)=[(a(n+1) + 1) \ 2 ]^2
两式相减
a(n+1) = S(n+1) - S(n) = [(a(n+1) + 1) \ 2 ]^2 - [(an + 1) \ 2 ]^2
移项,即
[(a(n+1) - 1) \ 2 ]^2 = [(an + 1) \ 2 ]^2
因为an为正项数列,故a(n+1) - 1 = an + 1,即a(n+1) = an + 2
等差数列
追问
a1 = S1 = [(a1 + 1) \ 2 ]^2,a1为正,a1 = 1;
a1 + a2 = S2 = [(a2 + 1) \ 2 ]^2,a2为正,a2 = 3;
a1 + a2 + a3 = S3 = [(a3 + 1) \ 2 ]^2,a3为正,a2 = 5;
我怎么不理解,能解释一下吗,谢谢您。
追答
对于一个数列,Sn表示前n项和,因此Sn=a1 + a2 + …… + an
因此当n = 1时,S1 = a1;当n = 2时,S2 = a1 +a2;当n = 3时,S3 = a1 + a2 + a3
对于你说的第一行,那是一元二次方程(a1未知),解出来a1 = 1
第二行第三行也是相应的一元二次方程(代入前面求的a1,a2),它们的解一正一负,由于an为正项数列,因此取正数的那个解
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询