原函数可导为什么导函数不一定连续?
不连续一定不可导,但是题干有说设f(x)可导,这个不是代表f'(x)是一个存在的数吗?为什么要考虑f'(x)连续性问题以及它为什么会不连续? 展开
原函数可导,导函数不一定连续。
举例说明如下:
当x不等于0时,f(x)=x^2*sin(1/x);
当x=0时,f(x)=0
这个函数在(-∞,+∞)处处可导。
导数是f'(x):
当x不等于0时,f'(x)=2xsin(1/x)-cos(1/x);
当x=0时,f'(x)=lim{[f(x)-f(0)]/(x-0),x->0}=lim[xsin(1/x),x->0]=0
lim[f'(x),x->0]不存在,所以在x=0这一点处,f'(0)存在但f'(x)不连续。
扩展资料:
函数连续:
1、所有多项式函数都是连续的。各类初等函数,如指数函数、对数函数、平方根函数与三角函数在它们的定义域上也是连续的函数。
2、绝对值函数也是连续的。
3、定义在非零实数上的倒数函数f= 1/x是连续的。但是如果函数的定义域扩张到全体实数,那么无论函数在零点取任何值,扩张后的函数都不是连续的。
4、非连续函数的一个例子是分段定义的函数。例如定义f为:f(x) = 1如果x> 0,f(x) = 0如果x≤ 0。取ε = 1/2,不存在x=0的δ-邻域使所有f(x)的值在f(0)的ε邻域内。直觉上我们可以将这种不连续点看做函数值的突然跳跃。
5、另一个不连续函数的例子为符号函数。
狄利克雷函数D(x)
x为有理数时 D(x)= 1
x为无理数时D(x)= 0
这个函数能帮你辨析一些模糊的概念。构造函数 f(x)= x²D(x) 你可以明显发现。这个函数,除了在x=0处可导连续外,在其他x=0邻域内都不连续。
楼主你遇到的这类题,往往要采用导数定义式去算,洛必达要用,要在x=x0的邻域里用。一点可导,无法使用洛必达,但是,一点可导,却可以用导数定义式来算。凑导数定义式,然后再算,才是正确的解题步骤。
祝你考研顺利!
推荐于2018-08-02